Skip to main content

An Importance Driven Monte-Carlo Solution to the Global Illumination Problem

  • Conference paper
Photorealistic Rendering Techniques

Part of the book series: Focus on Computer Graphics ((FOCUS COMPUTER))

Abstract

We propose a method for solving the global illumination problem with no restrictive assumptions concerning the behaviour of light either on surface or volume objects in the scene. Surface objects are defined either by facets or parametric patches and volume objets are defined by voxel grids which define arbitrary density distributions in a discrete tridimensional space. The rendering technique is a Monte-Carlo ray-tracing based radiosity which unifies the processing of objects in a scene, whether they are surfacic or volumic. The main characteristics of our technique are the use of separated Markov chains to prevent the explosion of the number of rays and an optimal importance sampling to speed-up the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Blasi, B. Le Saëc, C. Schlick, A Rendering Algorithm for Discrete Volume Density Objects, Proc. EUROGRAPHICS ’93, p103–116, 1993.

    Google Scholar 

  2. R.L. Cook, Stochastic Sampling in Computer Graphics, ACM Transactions on Graphics, v 5, nl, p 51–72, 1986.

    Article  Google Scholar 

  3. D.S. Ebert, R.E.Parent, Rendering and Animation of Gaseous Phenomena, Proc. SIGGRAPH 90, Computer Graphics, v24, n4, p 357–366, 1990.

    Article  Google Scholar 

  4. J.M. Hammerley, D.C. Handscomb, Monte-Carlo methods, Wiley, 1964.

    Google Scholar 

  5. X.He, K.Torrance, F.Sillion, D.Greenberg, A Comprehensive Physical Model for Light Reflection, Proc. SIGGRAPH 91, Computer Graphics, v25, n4, p187-196, 1991.

    Article  Google Scholar 

  6. M. Inakage, Volume Tracing of Atmospheric Environments, Visual Computer, p l04–113, 1991.

    Google Scholar 

  7. J.T. Kajiya, The Rendering Equation, Proc. SIGGRAPH 86, Computer Graphics, v20, n3, pl43–145, 1986.

    Google Scholar 

  8. J.T. Kajiya, B. Von Hertzen, Ray Tracing Volume Densities, Proc. SIGGRAPH 84, Computer Graphics, vl8, n3, p l65–174, 1984.

    Google Scholar 

  9. B. Le Saéc, C. Schlick, A Progressive Ray Tracing based Radiosity with General Reflectance Functions, Proc. First Eurographics Workshop on Rendering, p l03–116, 1990.

    Google Scholar 

  10. Thomas J. V. Malley, A Shading Method for Computer Generated Images, MS Thesis, Univ. of Utah, June 1988.

    Google Scholar 

  11. H.O. Peitgen, D. Saupe, The Science of Fractal Images, Springer Verlag, 1988.

    Google Scholar 

  12. H.E. Rushmeier, K.E. Torrance, The Zonal Method for calculating Light Intensities in Presence of Participating Medium, Proc. SIGGRAPH 87, Computer Graphics, v21, n4, p293–302, 1987.

    Article  Google Scholar 

  13. G. Sakas, Fast Rendering of Arbitrary Distributed Volume Densities, Proc. EU- ROGRAPHICS ’90, p 519–530, 1990.

    Google Scholar 

  14. C. Schlick, Divers elements pour une synthèse d’images réalistes, PhD Thesis, Université Bordeaux 1, 1992.

    Google Scholar 

  15. C. Schlick, An Inexpensive BDRF Model for Physically Based Rendering, to be presented at EUROGRAPHICS’94.

    Google Scholar 

  16. P.S. Shirley, Physically Based Lighting Calculations for Computer Graphics, PhD Thesis, University of Illinois, 1990.

    Google Scholar 

  17. P.S. Shirley, C Wang, Distribution Ray Tracing: Theory and Practice, Proc. Third Eurographics Workshop on Rendering, 1992.

    Google Scholar 

  18. F.Sillion, J.Arvo, S.Westin, D.Greenberg, A Global Illumination Solution for General Reflectance Distribution, Proc. SIGGRAPH 91, Computer Graphics, v25, n4, pl87–196, 1991.

    Article  Google Scholar 

  19. G.J. Ward, Measuring and Modeling Anisotropic Reflection, Proc. SIGGRAPH 92, Computer Graphics, v26, n2, p265–272, 1992.

    Article  Google Scholar 

  20. S.Westin, J.Arvo, K.Torrance, Predicting Light Reflection from Complex Surfaces, Proc. SIGGRAPH 92, Computer Graphics, v26, n2, p255–264, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 EUROGRAPHICS The European Association for Computer Graphics

About this paper

Cite this paper

Blasi, P., Le Saëc, B., Schlick, C. (1995). An Importance Driven Monte-Carlo Solution to the Global Illumination Problem. In: Sakas, G., Müller, S., Shirley, P. (eds) Photorealistic Rendering Techniques. Focus on Computer Graphics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87825-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87825-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87827-5

  • Online ISBN: 978-3-642-87825-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics