Skip to main content

Abstract

This paper presents an overview of some proposed probabilitybased service life prediction methods. Primary concern is focused on the methods that are of interest in service life assessment of an outdoor structure. The survey includes methods for characterizing random load histories, for modeling material deterioration, and for evaluating both instantaneous and progressive probabilities of failure. A numerical example, showing the service life and reliability of a viscoelastic structure under outdoor environmental loadings, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Haviland, R. P., Engineering Reliability and Long Life Design, D. Van Nostrand, New York, 1964.

    Google Scholar 

  2. Bolotin, V. V., Prediction of Service Life for Machines and Structures, ASME Press, New York, 1989.

    Google Scholar 

  3. Masters, L. W., ed., Problems in Service Life Prediction of Bulding and Construction Materials, NATO ASI Series E: Applied Sciences - No. 95, Martinus Publishers, the Netherland, 1985.

    Google Scholar 

  4. Čačko, J., Bily, M., and Bukoveczky, J., Random Processes: Measurement, Analysis, and Simulation, Elsevier, Amsterdam, 1988.

    MATH  Google Scholar 

  5. Khosrovaneh, A. K. and Dowling, D. E., Fatigue Loading History Reconstruction Based on the Rainflow Technique, International Journal of Fatigue, Vol. 12, No. 2, 1990, pp. 99–106.

    Article  Google Scholar 

  6. Haibach, E., Fischer, R., Schiitz, W., and Hiick, M., A Standard Random Loading Sequence of Gaussian Type Recommended for General Application in Fatigue Testing: Its Mathematical Background and Digital Generation, Proceedings of the International Conference on Fatigue Testing and Design, Vol. 2, SEE, London, April, 1976, pp. 29.1–29.21.

    Google Scholar 

  7. Box, G. E. P. and Jenkins, G. M., Time Series Analysis, Forecasting and Control, Holden-Day, San Francisco, 1976.

    MATH  Google Scholar 

  8. Priestley, M. B., Spectral Analysis and Time Series, Volume 1: Univariate Series, Academic Press, Florida, 1981.

    MATH  Google Scholar 

  9. Pandit, S. M. and Wu, S. M., Time Series and System Analysis with Applications, John Wiley and Sons, new York, 1983.

    MATH  Google Scholar 

  10. Samaras, E., Shinozuka, M., and Tsurui, A., ARMA Representation of Random Processes, Journal of Engineering Mechanics, ASCE, Vol. III, No. 3, 1985, pp. 449–461.

    Article  Google Scholar 

  11. Spanos, P. D. and Mignolet, M. P., Recursive Simulation of Stationary Multivariate Random Processes-Part 2, Journal of Applied Mechanics, ASME, Vol. 109, 1987, pp. 681–687.

    Article  MathSciNet  Google Scholar 

  12. Polhemus, N. W. and Cakmak, A. S., Simulation of Earthquake Ground Motions Using ARMA Models, Earthquake Engineering and Structural Dynamics, Vol. 9, 1981, pp. 343–354.

    Article  Google Scholar 

  13. Kozin, F., Autoregressive Moving Average Models of Earthquake Records, Probabilistic Engineering Mechanics, Vol. 3, No. 2, 1988, pp. 58–63.

    Article  Google Scholar 

  14. Houmb, O. G. and Overvik, T., Some Applications of Maximum Entropy Spectral Estimation to Ocean Waves and Linear Systems Response in Waves, Applied Ocean Resources, Vol. 3, No. 4, 1981, pp. 154–162.

    Article  Google Scholar 

  15. Spanos, P. D., ARMA Algorithms for Ocean Wave Modeling, Journal of Energy Resource Technology, ASME, Vol. 105, September, 1983, pp. 300–309.

    Article  Google Scholar 

  16. Reed, D. A. and Scanlan, R. H., Time Series Analysis of Cooling Tower Wind Loading, Journal of the Engineering Mechanics Division, ASCE, Vol. 109, No. 2, 1983, pp. 538–554.

    Google Scholar 

  17. Li, Y. and Kareem, A., ARMA Systems in Wind Engineering, Probabilistic Engineering Mechanics, Vol. 5, No. 2, 1009, pp. 50–59.

    Article  Google Scholar 

  18. Bendat, J. S. and Piersol, A. G., Engineering Application of Correlation and Spectral Analysis, John Wiley, New York, 1980.

    Google Scholar 

  19. Cooley, J. W., Lewis, P. A., and Welch, P. D., The Fast Fourier Transform and Its Applications, IEEE Transactions on Education, Vol. 12, No. 1, 1969, pp. 27–34.

    Article  Google Scholar 

  20. Enochson, L. D. and Otnes, R. K., Programming and Analysis for Digital Time Series Data, Shock and Vibration Monograph Series, U.S. Department of Defense, Navy Publication and Printing Service Office, Washington, D.C., 1968.

    Google Scholar 

  21. Shinozuka, M. and Jan, C.-M., Digital Simulation of Random Processes and Its Applications, Journal of Sound and Vibration, Vol. 25, 1972, pp. 111–128.

    Article  Google Scholar 

  22. Heller, R. A., Thermal Stress as a Narrow Band Random Load, Journal of the Engineering Mechanics Division, ASCE, Vol. 102, No. EM5, October, 1976, pp. 787–805.

    Google Scholar 

  23. Wirsching, P. H. and Light, M. C., Fatigue under Wide Band Random Stresses, Journal of the Structural Division, ASCE, Vol. 106, No. ST7, July, 1980, pp. 1593–1607.

    Google Scholar 

  24. Brooks, E. M., Climate, Encyclopedia of America, Americana Corp., 1970.

    Google Scholar 

  25. Heller, R. A., Kamat, M. P., and Singh, M. P., Probability of Solid Propellant Motor Failure Due to Environmental Temperature, Journal of Spacecraft and Rockets, Vol. 16, No. 3, 1979, pp. 140–146.

    Article  Google Scholar 

  26. Heller, R. A. and Singh, M. P., Thermal Storage Life of Solid Propellant Motors, Journal of Spacecraft and Rockets, Vol. 20, No. 2, 1983, pp. 144–149.

    Article  Google Scholar 

  27. Thangjitham, S. and Heller, R. A., Test and Evaluation of Dynamic Properties of Solid-Propellant Rocket Motor Materials, Volume I-Random Environmental Thermal Load Models and Their Effects on the Service Life of Rocket Motors, Technical Report CR-RD-86–8, USAMICOM, Redstone Arsenal, Alabama, October, 1986.

    Google Scholar 

  28. Anon., Hourly Solar Radiation-Surface Meteorological Observations, National Oceanic and Atmospheric Administration, Vol. I & II, TD-9724, 1978.

    Google Scholar 

  29. Thangjitham, S. and Heller, R. A. Thermal Stresses in a Rocket Motor under Environmental Loading, Journal of Spacecraft and Rockets, AIAA, Vol. 23, No. 5, 1986, pp. 519–526.

    Article  Google Scholar 

  30. Donn, W. L., Meteorology, 3rd ed., McGraw-Hill, New York, 1965.

    Google Scholar 

  31. Chou, K. C. and Corotis, R. B., Generalized Wind Speed Probability Distribution, Journal of Engineering Mechanics Division, Transactions of ASCE, Vol. 109, No. 1, February, 1983, pp. 14–29.

    Article  Google Scholar 

  32. Dawson, T. H., Offshore Structure Engineering, Prentice Hall, N.J., 1983.

    Google Scholar 

  33. Dean, R. G. and Daynuple, R. A., Water Wave Mechanics for Engineers and Scientists, Prentice Hall, N.J., 1984.

    Google Scholar 

  34. Bretschneider, C. L., Overwater Wind and Wind Forces, in Handbook of Ocean and Underwater Engineering, Chapter 12, J. J. Meyers, et al., eds., McGraw-Hill, New York, 1969.

    Google Scholar 

  35. Layton, L. H., Chemical Aging Studies on ANB-3066 and TH-H1011 Propellants, Final Technical Report, AFRPL-TR-74–16, 1974.

    Google Scholar 

  36. Cost, T. L., Computer Simulation of Solid Rocket Motor Service Life for Thermal Loads, in Thermal Stresses in Severe Thermal Environments, D. P. H. Hasselman and R. A. Heller, eds., Plenum Press, New York, 1980, pp. 431–445.

    Chapter  Google Scholar 

  37. Christensen, R. M., Theory of Viscoelasticity, Academic Press, New York, 1971.

    Google Scholar 

  38. Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley & Sons, New York, 1970.

    Google Scholar 

  39. Palmgren, A., Ball and Roller Bearing Engineering, translated by G. Palmgren and B. Ruley, SKF Industries, Inc, Philadelphia, PA, 1945, pp. 82–83.

    Google Scholar 

  40. Miner, M. A., Cumulative Damage in Fatigue, Journal of Applied Mechanics, ASME, Vol. 12, September, 1945, pp. l59–164.

    Google Scholar 

  41. Freudenthal, A. M., and Heller, R. A., On Stress Interaction in Fatigue and a Cumulative Damage Rule, Journal of the Aero/Space Science, Vol. 26, No. 9, 1959, pp. 431–442.

    MATH  Google Scholar 

  42. Bills, W. K., Jr. and Wiegand, J. H., The Application of an Integrated Structural Analysis to the Prediction of Reliability, Annals of Reliability and Maintainability, 1970, pp. 514–526.

    Book  Google Scholar 

  43. Bogdanoff, J. L. and Kozin, K., Probabilistic Models of Cumulative Damage, John Wiley & Sons, New York, 1985.

    Google Scholar 

  44. Bazant, Z. P., Mathematical Models for Creep and Shrinkage of Concrete, in Creep and Shrinkage in Concrete Structures, Z. P. Bazant and F. H. Wittmann, eds., John Wiley & Sons, New York, 1982.

    Google Scholar 

  45. Freudenthal, A. M., Aspects of Fatigue Damage Accumulation at Elevated Temperature, Proceedings of International Conference on Mechanisms of Fatigue, Acta Metallurgica, Vol. 77, July, 1963.

    Google Scholar 

  46. Heller, R. A. and Donat, R. C., Fatigue Failure of a Redundant Structure, ASTM-STP 404, American Society for Testing and Materials, 1964, pp. 55–66.

    Google Scholar 

  47. Paris, P. C. and Erdogan, F., A Critical Analysis of Crack Propagation Laws, Journal of Basic Engineering ) Trans. ASME, Series D, Vol. 85, 1963, pp. 528–534.

    Article  Google Scholar 

  48. Forman, R. G., Kearney, V. E., and Engle, R. M., Numerical Analysis of Crack Propagation in Cyclic Loaded Structures, Journal of Basic Engineering, Trans. ASME, Series D, Vol. 89, 1967, pp. 459–465.

    Article  Google Scholar 

  49. Walker, E. K., The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, in The Effect of Environment and Complex Load History on Fatigue Life, ASTM-STP 462, 1970, pp. 1–14.

    Article  Google Scholar 

  50. Heller, R. A. and Thangjitham, S., The Effects of Variable Temperature on Fracture, Arch. Mech., Vol. 39, 1987, pp.395–409.

    Google Scholar 

  51. Heller, R. A., ed., Probabilistic Aspects of Fatigue, ASTM STP 511, American Society for Testing and Materials, 1972.

    Google Scholar 

  52. Provan, J. W., Probabilistic Fracture Mechanics and Reliability, Martinus Nijhoff, 1987.

    MATH  Google Scholar 

  53. Hahn, G. J. and Shapiro, S. S., Statistical Models in Engineering, John Wiley k Sons, New York, 1967.

    Google Scholar 

  54. Benjamin, J. R. and Cornell, C. A., Probability, Statistics and Decision for Civil Engineers, McGraw-Hill, New York, 1970.

    Google Scholar 

  55. Ang, A H-S. and Tang, W. H., Probability Concepts in Engineering Planning and Design: Volume I, Basic Principles, John Wiley kSons, New York, 1975.

    Google Scholar 

  56. Freudenthal, A. M., Garrelt, J. M., and Shinozuka, M., The Analysis of Structural Safety, Journal of Structural Division, Transactions of the ASCE, Vol. 92, No. ST1, 1966, pp. 267–325.

    Google Scholar 

  57. Ang, A H-S. and Tang, W. H., Probability Concepts in Engineering Planning and Design: Volume II, Decision, Risk, and Reliability, John Wiley &Sons, New York, 1984.

    Google Scholar 

  58. Rackwitz, R., Practical Probabilistic Approach to Design, Bullentin 112, Comite European du Beton, Paris, France, 1976.

    Google Scholar 

  59. Moses, F. and Kinser, D. E., Analysis of Structural Reliability, Journal of the Structural Division, ASCE, Vol. 93, No. ST5, October, 1967.

    Google Scholar 

  60. Chamis, C. C., Probabilistic Structural Analysis Methods for Space Propulsion System Components, Probabilistic Engineering Mechanics, Vol. 2, No. 2, 1987, pp. 100–110.

    Article  Google Scholar 

  61. Faravelli, L., A Response Surface Approach for Reliability Analysis, Journal of Engineering Mechanics, ASCE, Vol.115, No. 12, 2763–2781.

    Google Scholar 

  62. Heller, R. A. and Janajreh, I. M., The Reliability of Rocket Motors Subjected to Static and Dynamic Loads, Technical Report CR-RD-PR- 92–4, USAMICOM, Redstone Arsenal, AL, April, 1982.

    Google Scholar 

  63. Fujita, M., Schall, G., and Rackwitz, R., Time Variant Component Reliabilities by FORM and SORM and Updating by Importance Sampling, Proceedings of ICASP5, Vancouver, Vol. 2, 1987, pp. 520–527.

    Google Scholar 

  64. Schueller, G. I. and Stix, R., A Critical Appraisal of Methods to Determine Failure Probabilities, Structural Safety, Vol. 4, 1987, pp. 293–309.

    Article  Google Scholar 

  65. Bjerager, P., Probability Integration by Directional Simulation, Journal of Engineering Mechanics, ASCE, Vol. 114, No. 8, 1988, pp. 1285–1301.

    Article  Google Scholar 

  66. Wu, T. and Wirsching, P. H., Algorithm for Structural Reliability Estimation, Journal of Engineering Mechanics, ASCE, Vol. 113, No. 9, 1987, pp. 1319–1336.

    Article  Google Scholar 

  67. Bazovsky, I., Reliability Theory and Practice, Prentice Hall, Englewood Cliffs, NJ, 1961.

    Google Scholar 

  68. Cramer, H. and Leadbetter, M. R., Stationary and Related Stochastic Processes, John Wiley and Sons, New York, 1967.

    MATH  Google Scholar 

  69. Zibdeh, H. S. and Heller, R. A., Environmental Thermal Stress as a First Passage Problem, in Random Vibration-Status and Recent Developments, I. Elishakoff and R. H. Lyon, eds., Elsevier, Amsterdam, 1986, pp. 537–553.

    Google Scholar 

  70. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, London, 1976.

    Google Scholar 

  71. Thangjitham, S., Heller, R. A., and Singh, M. P., Frequency Response Functions for Thermal Stresses in Multilayered Cylindrical Structures, Journal of Thermal Stresses, Vol. 9, 1986, pp. 133–150.

    Article  Google Scholar 

  72. Boley, B. A. and Weiner, J. H., Theory of Thermal Stress, John Wiley and Sons, Inc., New York, 1960.

    Google Scholar 

  73. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  74. Newland, D. E., Random Vibrations and Spectral Analysis, Longman, London, 1975.

    Google Scholar 

  75. Heller, R. A. and Singh, M. P., Allowable Strength of Viscoelastic Materials Under Variable Thermal Loads, in Thermal Stresses in Severe Thermal Environments, D. P. H. Hasselman and R. A. Heller, eds., Plenum Press, New York, 1980, pp. 491–502.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Heller, R.A., Thangjitham, S. (1994). A Survey of Probabilistic Service Life Prediction Methods for Structures. In: Spanos, P.D., Wu, YT. (eds) Probabilistic Structural Mechanics: Advances in Structural Reliability Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85092-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85092-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85094-3

  • Online ISBN: 978-3-642-85092-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics