Skip to main content

Gene regulatory circuits in Saccharomyces cerevisiae as a tool for the identification of heterologous eukaryotic regulatory elements

  • Conference paper
Molecular Biology and its Application to Medical Mycology

Part of the book series: NATO ASI Series ((ASIH,volume 69))

  • 159 Accesses

Abstract

The yeasts S. cerevisiae and Schizosaccharomyces pombe are non-pathogenic, prevalently haploid unicellular fungi that grow and form colonies on defined media. Both organisms have been for decades favoured objects of investigation, first by classical genetics and more recently by molecular techniques. Knowledge accumulated, specially over the last few years, has revealed that both yeasts, not only clarify mechanisms of genetic transmission (gene expression, mitosis and meiosis) and signal transduction common to higher eukaryotes but, unexpectedly, also illuminate many processes crucial to the development of multicellular organisms such as cell differentiation and cell-cell interactions. Many elements (proteins, cis acting elements) of the control circuits of the cell are conserved from yeast to mammals; remarkably, in many cases, yeast control elements can be replaced with elements of heterologous control circuits. It is thus possible to isolate genes from higher eukaryotes by complementation and to scrutinize their function by the powerful genetics now available in both yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt K and Fink G (1986) GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5’ TGACTC 3’ sequences. Proc. Natl. Acad. Sci. USA 83: 8516–8520.

    Article  PubMed  CAS  Google Scholar 

  • Becker DM, Fikes JD and Guarente L (1991) A cDNA encoding a human CAAT-binding protein cloned by functional complementation in yeast. Proc. Natl. Acad. Sci. USA 88: 1968.

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S and Wigler M (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Sharp PA and Guarente L (1988) Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334: 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Chen W and Struhl K (1985) Yeast mRNA initiation sites are determined primarily by specific sequences, not by the distance from the TATA element. EMBO J. 4: 3273–3280.

    PubMed  CAS  Google Scholar 

  • Ciaramella M, Sacco M and Pulitzer JF (1988) Foreign transcriptional enhancers in yeast. I. Interactions of papovavirus transcriptional enhancers and a quiescent pseudopromoter on supercoiled plasmids. Nucl. Acids Res. 16: 8847–8868.

    CAS  Google Scholar 

  • DeFeo Jones D, Scolnick EM, Koller R and Dhar R (1983) ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Dunphy WG and Kumagai A (1991) The cdc25 protein contains an intrinsic phosphatase activity. Cell 67: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Geiser JR, van Tuinen D, Brockerhoff SE, Neff MM and Davis TN (1991) Can calmodulin function without binding calcium? Cell 65: 949–959.

    Article  PubMed  CAS  Google Scholar 

  • Gould KL, Moreno S, Tonks NK and Nurse P (1990) Complementation of the mitotic activator, p80cdc25, by a human protein-tyrosine phosphatase. Science 250: 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  • Hahn S and Guarente L (1988) Yeast HAP2 and HAP3: transcriptional activators in a heteromeric complex. Science 240: 317–321

    Article  PubMed  CAS  Google Scholar 

  • Hall A (1990) The cellular functions of small GTP-binding proteins. Science 249: 635–640.

    Article  PubMed  CAS  Google Scholar 

  • Hope I and Struhl K (1985) GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for general control of amino acid biosynthetic genes in yeast. Cell 43: 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Hughes DA, Fukui Y, Yamamoto M (1990) Homologous activators of ras in fission and budding yeast. Nature 344 6264: 355–357.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Powers S, Cameron S, Fasano O, Goldfarb M, Broach J and Wigler M (1985) Functional homology of mammalian and yeast RAS genes. Cell 40:19–26.

    Article  PubMed  CAS  Google Scholar 

  • Lee MG and Nurse P (1988) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.

    Article  Google Scholar 

  • Leopold P and O’Farrell PH (1991) An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66: 1207–1216.

    Article  PubMed  CAS  Google Scholar 

  • Nagawa F and Fink GR (1985) The relationship between the “TATA” sequence and transcription initiation sites at the HIS4 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 82: 8557–8561.

    Article  PubMed  CAS  Google Scholar 

  • Powers S, O’Neill K and Wigler M (1989) Dominant yeast and mammalian RAS mutants that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 390–395.

    PubMed  CAS  Google Scholar 

  • Pringle JR and Hartwell LH (1982) The Saccharomyces cerevisiae life cycle. In The Molecular Biology of the Yeast S. Cerevisiae Cold Spring Harbor Lab. (J.N. Strathern et al. Eds) p. 97-142.

    Google Scholar 

  • Pugh BF and Tjian R (1992) Diverse transcriptional functions of the multisubunit eukaryotic TFIID complex. J. Biol. Chem. 267: 679.

    PubMed  CAS  Google Scholar 

  • Struhl K (1987a) The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Cell 50: 841–846.

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1987b) Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49:295–297.

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K and Wigler M (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pulitzer, J.F., Pollice, A. (1993). Gene regulatory circuits in Saccharomyces cerevisiae as a tool for the identification of heterologous eukaryotic regulatory elements. In: Maresca, B., Kobayashi, G.S., Yamaguchi, H. (eds) Molecular Biology and its Application to Medical Mycology. NATO ASI Series, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84625-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84625-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84627-4

  • Online ISBN: 978-3-642-84625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics