Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 13))

Abstract

This chapter deals with those sources that are commonly regarded as making a minor contribution to the total atmospheric concentration of methane. The definition of “minor” is somewhat arbitrary; that is, they are sources not covered elsewhere in this volume or identified in the other chapters as being of only “minor significance.” In isolation the majority of these sources may be regarded as inconsequential; however, in combination they provide a significant proportion of atmospheric methane. In certain cases it is possible that the true significance of their contribution is yet to be realized, and some may have been overlooked hitherto. More detailed discussions of these sources are provided by Hovland et al. (1993), Lacroix (1993), Lambert and Schmidt (1993), Rouland et al. (1993), Smith et al. (1993), and Khalil et al. (1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, T. 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia. J. Ecol. Japan, 292: 121–136.

    Google Scholar 

  • Abrajano, T.A., N.C. Sturchi, J.K. Bohlke, G.L. Lyon, R.J. Poreda, C.M. Stevens. 1988. Methane-hydrogen gas seeps, Zambales Ophiolites, Philippines: deep or shallow origin? In: Origins of Methane in the Earth Chem. Geol., 72:211–222.

    Google Scholar 

  • Addy, S.K., J.L. Worzel. 1979. Gas seeps and sub-surface structure off Panama City, Florida. Am. Assoc. Petrol. Geol. (Bull.), 63: 668–675.

    Google Scholar 

  • Andronova N.G., I.L. Karol. 1993. The contribution of USSR sources to global methane emission. Chemosphere, 26 (1–4): 111–126.

    Article  CAS  Google Scholar 

  • Aravena, R., L.I. Wassenaar, J.F. Baricek. 1989. Investigating carbon sources for methane and dissolved organic carbon in a regional confined aquifer using 14C, radiocarbon. Proc. 14th Internat. Radiocarbon Conf, 31: 170–171.

    Google Scholar 

  • Atkinson, L.P., A.F. Richards. 1967. The occurrence of methane in the marine environment. Deep Sea Res., 14: 673–684.

    CAS  Google Scholar 

  • Baross, J.A., M.D. Lilley, L.I. Gordson. 1982. Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature, 298: 366–368.

    Article  CAS  Google Scholar 

  • Belviso, S., P. Jean-Baptiste, B.C. Nguyen, L. Merlivat, L. Labeyrie. 1987. Deep methane maxima and 3He anomalies across the Pacific entrance to the Celebes Basin. Geochem. Cosmochim. Acta, 51: 2373–680.

    Article  Google Scholar 

  • Bordkov, Yu K., V.I. Yefimov, J.B. Timkia. 1988. Result of a gas-biochemical survey of snow cover for direct exploration for hydrocarbon deposits in the Venisey-Khatanga Downwarp (U.S.S.R.). Petrol. Geol., 22: 203–205.

    Google Scholar 

  • Brauman, A. 1989. Etude du métabolisme bactérien de termites supérieurs à régimes alimentaires différenciés. Thèse d’Université, Aix-Marseille II, 168 p.

    Google Scholar 

  • Brauman, A., M. Labat, P. Methener, C. Rouland, J.L. Garcia. 1987. Etude de la microfflore hétérotrophe de termite supérieur en fonction de leur régime alimentaire. In: Diversité microbienne. A Coll. Soc. Fr. Microbiol. 18–21.

    Google Scholar 

  • Brauman, A., M.D. Kane, M. Labat, J.A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science, 257:1384–1387.

    Google Scholar 

  • Breznak, J.A. 1975. Symbiotic relationship between termites and their intestinal microbiota. In: Symbiosis (D.H. Jennin and D.L. Lee, eds. ), Cambridge University Press.

    Google Scholar 

  • Brooks, J.M. 1979. Deep methane maxima in the northwest Caribbean sea: possible seepage along the Jamaica Ridge. Science, 206:1069–1072.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J.M., J.R. Gormly, W.M. Sackett. 1974. Molecular and isotopic composition of two seep gases from the Gulf of Mexico. Geophys. Res. Let., 1: 213–217.

    Article  CAS  Google Scholar 

  • Brooks, J.M., D.F. Reid, B.B. Bernard. 1981. Methane in the upper water column of the northwestern Gulf of Mexico. J. Geophys. Res., 86:11, 029–11, 040.

    Article  CAS  Google Scholar 

  • Buat-Ménard, P. 1986. The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI Ser. C, 185, Reidel, Dordrecht.

    Google Scholar 

  • Burke, R.I. Jr., D.F. Reld, J.M. Brooks, D.M. Lavole. 1983. Upper water column methane geochemistry in the eastern tropical North Pacific. Limnol. Oceanogr., 28: 19–32.

    Article  CAS  Google Scholar 

  • Bustin, R.M., W.H. Matthews. 1985. In situ gassification of coal, a natural example: additional data on the Aldridge Creek coal fire, south-eastern British Columbia. Can. J. Earth Sci., 22:1, 858–1, 864.

    Article  CAS  Google Scholar 

  • Chappellaz, J., J.M. Barnola, D. Raynaud, Y.S. Korotkevich, C. Lorius. 1990. Ice-core record of atmospheric methane over the past 160,000 years. Nature, 345: 127–131.

    Article  CAS  Google Scholar 

  • Charlou, J.L., P. Rona, H. Bougault. 1987. Methane anomalies over TAG hydrothermal field on Mid Atlantic Ridge. J. Marine Res., 45: 461–472.

    Article  CAS  Google Scholar 

  • Charlou, J.L., L. Dmitriev, H. Bougault, H.D. Needham. 1988. Hydrothermal CH4 between 12°N and 15°N over the Mid-Atlantic Ridge. Deep Sea Res., 35: 121–131.

    Article  CAS  Google Scholar 

  • Charlou, J.L., H. Bougault, P. Appriou, P. Jean-Baptiste, J. Etoubleau, A. Birolleau. 1991. Water column anomalies associated with hydrothermal activity between 11°40’N and 13°N on the east Pacific Rise: discrepancies between tracers. Deep Sea Res., 38: 569–596.

    Article  CAS  Google Scholar 

  • Cicerone, R.J., R.S. Oremland. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299–327.

    Article  CAS  Google Scholar 

  • Clarke, R.H., R.W. Cleverly. 1991. Petroleum seepage and post-accumulation migration. In: Petroleum Migration, Geol. Soc. Sp. Publ. No. 59 (W.A. England and A.J. Fleet, eds. ), Geological Society of London.

    Google Scholar 

  • Coleman, D.D., C. Liu, K.M. Riley. 1988. Microbial methane in the shallow paleozoic sediments and glacial deposits of Illinois, USA. Chem. Geol., 71: 23–40.

    Article  CAS  Google Scholar 

  • Collins, N.M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern guinea savanna of Nigeria. Oecologia, 51: 389–399.

    Article  Google Scholar 

  • Des Marais, D.J., M.L. Stallard, N.L. Nehring, A.H. Truesdell. 1988. Carbon isotope geochemistry of hydrocarbons in the Cerro Prieto geothermal field, Baja California Norte, Mexico. In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. Geol. 71: 159–167.

    Google Scholar 

  • Dillon, W.P., C.K. Paull. 1983. Marine gas hydrates–II: geophysical evidence. In: Natural Gas Hydrates: Properties, Occurrence and Recovery ( J.L. Cox, ed.), Butterworth, Boston, p 73–90.

    Google Scholar 

  • Duce, R.A. (ed.). 1989. SEAREX. The Air/Sea Exchange Program. Chem. Oceanogr. 10:404.

    Google Scholar 

  • Dunlap, H.F., J.S. Bradley, T.F. Moore. 1960. Marine seep detection–a new reconnaissance exploration method. Geophysics, 25: 275–282.

    Article  Google Scholar 

  • Earney, F.C.F. 1980. Petroleum and Hard Minerals from the Sea. V.H. Winston and Sons, New York, 291 p.

    Google Scholar 

  • Ehhalt, D.H. 1974. The atmospheric cycle of methane. Tellus, XXVI (1–2): 58–70.

    Article  Google Scholar 

  • Ehhalt, D.H., U. Schmidt. 1978. Sources and sinks of atmospheric methane. Pure Appl. Geophys., 116: 452–464.

    Article  CAS  Google Scholar 

  • Etcheto, J., J. Boutin, L. Merlivat. 1991. Seasonal variation of the CO2 exchange coefficient over the global ocean using satellite wind speed measurements. Tellus, 43B: 247–255.

    Article  Google Scholar 

  • Fischer, P.J., A.J. Stevenson. 1973. Natural hydrocarbon seeps along the northern shelf of the Santa Barbara Channel, California. Paper 1728, Offshore Technol. Conf., Houston, Texas.

    Google Scholar 

  • Floodgate, G.D., A.G. Judd. 1992. The origins of shallow gas. Continental Shelf Res., 12:1, 145–1, 156.

    Google Scholar 

  • Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L.P. Steele, P.J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res., 96: 13, 033–13, 065.

    Article  CAS  Google Scholar 

  • Gamo, T., J.-I. Ishibashi, H. Sakai, B. Tilbrook. 1987. Methane anomalies in seawater above the Loihi submarine summit area, Hawaii. Geochem. Cosmochim. Acta, 51: 2, 857–2, 864.

    Google Scholar 

  • Gamo, T., J.-I. Ishibashi, K. Shitashima, M. Kinoshita, M. Watanabee, E. Nakayama, Y. Sohrin, E.-S. Kim, T. Mazuzawa, K. Fujioka. 1988. Anomalies of bottom CH4 and trace metal concentrations associated with high heat flow at the Calyptogena community off Hatsushima Island, Sagami Bay, Japan: A preliminary report of Tansei Maru KT-88–1 cruise Leg 1. Geochem. J., 22: 215–230.

    Article  CAS  Google Scholar 

  • Geyh, M.A., B. Softner. 1989. Groundwater analysis of environmental carbon and other isotopes from the Jakarta Basin Aquifer, Indonesia. Radiocarbon, 31: 919–925.

    Google Scholar 

  • Glasby, G.P. 1971. Direct observations of columnar scattering associated with geothermal gas bubbling in the Bay of Plenty, New Zealand. N.Z. J. Mar. Freshwater Res., 5: 483–496.

    Article  Google Scholar 

  • Glotov, V., V.V. Ivanov, N.A. Shilo. 1985. Migration of hydrocarbons through permafrost rock. Trans. (Doklady) U.S.S.R Acad. Sci., Earth Sci. Sect., 285: 192–194.

    Google Scholar 

  • Gold, T., S. Soter. 1980. The deep earth gas hypothesis. Sci. Am., 242: 154–161.

    Article  CAS  Google Scholar 

  • Gold, T., S. Soter. 1982. Abiogenic methane and the origin of petroleum. Energy Exploration and Exploitation, 1: 89–104.

    CAS  Google Scholar 

  • Hedberg, H.D. 1980. Methane generation and petroleum migration. In: Problems of Petroleum Migration. Am. Assoc. Petrol. Geol. Studies in Geology No. 10 ( W.H. Roberts, III, and R.J. Cordell, eds. ), pp 179–206.

    Google Scholar 

  • Hekinian, R. 1984. Undersea volcanoes. Sci. Am., 251: 46–55.

    Article  Google Scholar 

  • Higgins, G.E., J.B. Saunders. 1974. Mud volcanoes–their nature and origin. Verhandl Naturforschung Gellschaft, Basel, 84: 101–154.

    Google Scholar 

  • Horibe, Y., K. Kim, H. Craig. 1986. Hydrothermal methane plumes in the Mariana back-arc spreading centre. Nature, 324: 131–133.

    Article  CAS  Google Scholar 

  • Hovlai d, M., A.G. Judd. 1988. Pockmarks and Seabed Seepages: Impact on Geology, Biology and the Marine Environment. Graham & Trotman, London.

    Google Scholar 

  • Hovland, M., A.G. Judd, R.A. Burke. 1993. The global flux of methane from shallow submarine sediments. Chemosphere, 26 (1–4): 559–578.

    Article  CAS  Google Scholar 

  • Hunt, J.M. 1979. Petroleum Geochemistry and Geology, W.H. Freeman, San Francisco.

    Google Scholar 

  • Jones, R.D. 1991. Carbon monoxide and methane distribution and consumption in the photic zone of the Sargasso Sea. Deep Sea Res., 38: 625–635.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen. 1983. Sources, sinks and seasonal cycles of atmospheric methane. J. Geophys. Res., 88:5, 131–5, 144.

    Article  CAS  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, J.R.J. French, J.A. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHC13, N20, H2 and light hydrocarbons. J. Geophys. Res., 95:3, 619–3, 634.

    Article  Google Scholar 

  • Khalil, M.A.K., R.A. Rasmussen, M.J. Shearer, S. Ge, J.A. Rau. 1993. Methane from coal burning. Chemosphere, 26 (1–4): 473–478.

    Article  CAS  Google Scholar 

  • Kulm, L.D., E. Suess, J.C. Moore, V. Carson, B.T. Lewis, S.D. Ritger, D.C. Kadko, T.M. Thornburg, R.W. Embley, W.D. Rugh, G.J. Massoth, M.G. Langseth, G.R. Cochrane, R.L. Scamman. 1986. Oregon subduction zone: venting fauna and carbonates. Science, 231: 561–566.

    Article  PubMed  CAS  Google Scholar 

  • Kvenvolden, K.A. 1988. Methane hydrate: a major reserve of carbon in the shallow geosphere. In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. Geol., 71: 41–51.

    Google Scholar 

  • Kvenvolden, K.A., J.W. Harbaugh. 1983. Reassessment of the rates at which oil from natural sources enters the marine environment. Marine Env. Res., 10: 223–243.

    Article  Google Scholar 

  • Lacroix, A.V. 1993. Unaccounted-for sources of fossil and isotopically-enriched methane and their contribution to the emissions inventory: A review and synthesis. Chemosphere, 26 (1–4): 507–558.

    Article  CAS  Google Scholar 

  • Lambert, G., S. Schmidt. 1993. Re-evaluation of the oceanic flux of methane: uncertainties and long term variations. Chemosphere, 26 (1–4): 579–590.

    Article  CAS  Google Scholar 

  • Lamontagne, R.A., J.W. Swinnerton, V.J. Linnenbon, W.D. Smith. 1973. Methane concentrations in various marine environments. J. Geophys. Res., 78: 5317–5324.

    Article  CAS  Google Scholar 

  • Lamontagne, R.A., J.W. Swinnerton, V.J. Linnenbon. 1974. C1–C4 hydrocarbons in the north and south Pacific. Tellus, XXVI:(1–2)71–77.

    Google Scholar 

  • Landes, K.K. 1973. Mother nature as oil polluter. Am. Assoc. Petrol. Geol. (Bull), 53: 2431–2479.

    Google Scholar 

  • Lawrence, J.R., M. Taviani. 1988. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore water and carbonates of the sediments and basalts from the Norwegian Sea: methane and hydrogen from the mantle. Geochim. et Cosmochim. Acta, 52: 2077–2083.

    Article  CAS  Google Scholar 

  • Leavitt, S.W. 1982. Annual volcanic carbon dioxide emission: an estimate from eruption chronologies. Environ. Geol., 4: 15–21.

    Article  CAS  Google Scholar 

  • Lilley, M.D., J.A. Baross, L.I. Gordon. 1982. Dissolved hydrogen and methane in Saanich Inlet, British Columbia. Deep Sea Res., 28:1, 471–1, 484.

    Google Scholar 

  • Link, W.K. 1952. Significance of oil and gas seeps in world oil exploration. Am. Assoc. Petrol. Geol. (Bull.), 36:1, 505–1, 540.

    CAS  Google Scholar 

  • Lowe, D.C., C.A.M. Brenninkmeijer, M.R. Manning, R. Sparks, G. Wallace. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature, 332: 522–525.

    Article  CAS  Google Scholar 

  • MacDonald, G.J. 1983. The many origins of natural gas. J. Petrol. Geol., 5: 341–362.

    Article  CAS  Google Scholar 

  • Malahoff, A. 1985. Hydrothermal vents and polymetallic sulfides of the Galapagos and Gorda/Juan de Fuca Ridge systems and of submarine volcanoes. In: Hydrothermal Vents of the Eastern Pacific: An Overview (M.L. Jones, ed.), Bull. Biol. Soc., Washington, 6: 19–41.

    Google Scholar 

  • Matsumoto, T. 1976. The role of termites in an equatorial rain forest ecosystem of west Malaysia. Oecologia, 22: 153–178.

    Article  Google Scholar 

  • Matthews, M. 1986. Logging characteristics of methane hydrate. The Log Analyst May-June 1986: 26–63.

    Google Scholar 

  • Merlivat, L., F. Pineau, M. Javoy. 1987. Hydrothermal vent waters at 13°N on the East Pacific Rise: isotopic composition and gas concentration. Earth & Planet. Sci. Let., 84: 100–108.

    Article  CAS  Google Scholar 

  • Mora, P., C. Rouland, V. Dibangou, J. Renoux. 1990. Damages caused by the recent infestations of the sugar cane fields by the fungus growing termite Pseudacanthotermes spiniger. Act. 11th Int. Cong. IU.S.S.I., Bengalore, India, p 78.

    Google Scholar 

  • Parnell, J. 1988. Migration of biogenic hydrocarbons into granites–a review of hydrocarbons in British plutons. Mar. & Petrol. Geol., 5: 385–395.

    Article  CAS  Google Scholar 

  • Parnell, J., I. Swainbank. 1990. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales (United Kingdom). Geology, 18:1028–1030.

    Article  CAS  Google Scholar 

  • Philp, R.P. 1987. Surface prospecting methods for hydrocarbon accumulations. In: Advances in Petroleum Geochemistry, Vol. II ( J. Brooks and D. Weite, eds.), Academic Press, London, p 209–253.

    Google Scholar 

  • Piccot, S., A. Chadha, J. Dewaters, T. Lynch, P. Marsosudiro, W. Tax, S. Walata, J.D. Winkler. 1990. Evaluation of significant anthropogenic sources of radiatively important trace gases. EPA–600/8–90–079, U.S. Environmental Protection Agency, Research Triangle, NC.

    Google Scholar 

  • Prior, D.B., E.H. Doyle, M.J. Kaluza. 1989. Evidence for sediment eruption on deep sea floor, Gulf of Mexico. Science, 243: 517–519.

    Article  PubMed  CAS  Google Scholar 

  • Reeburgh, W.S., B.B. Ward, S.C. Whalen, K.A. Sandbeck, K.A. Kilpatrick, L.J. Kerkhof. 1991. Black Sea methane geochemistry. Deep Sea Res. 38 Suppl. Issue 2A: S1198 - S1210.

    Google Scholar 

  • Reitsema, R.H. 1979. Gases of mud volcanoes in the Copper River Basin, Alaska. Geochim. et Cosmochim. Acta, 43: 183–187.

    Article  CAS  Google Scholar 

  • Renoux, J., C. Rouland, P. Mora, N. Hassen. 1991. Dégats causés par les termites champignonnistes dans les cultures de canne à sucre en Afrique Intertropicale. Coll. Inter. Canne à Sucre, Montpellier, France

    Google Scholar 

  • Rice, D.R., G.C. Claypool. 1981. Generation accumulation and resource potential of biogenic gas. Am. Assoc. Petrol. Geol. (Bull.), 65: 5–25.

    CAS  Google Scholar 

  • Richards, A.F., J.D. Cline, W.W. Broenkow, L.P. Atkinson. 1965. Some consequences of the decomposition of organic matter in Lake Litinat, an anoxic fjord. LimnoL Oceanogr., 10 (suppl.): R185 - R201.

    Article  Google Scholar 

  • Ridd, M.F. 1970. Mud volcanoes in New Zealand. Am. Assoc. Petrol. Geol. (Bull.) 54: 601–616.

    Google Scholar 

  • Rouland, C., C. Chararas, J. Renoux. 1986. Etude comparée des osidases de trois espèces de termites à régimes alimentaire différent. C.R. Acad. Sc. Paris, 302: 341–345.

    CAS  Google Scholar 

  • Rouland, C., A. Brauman, S. Keleke, M. Labat, P. Mora, J. Renoux. 1989. Endosymbiosis and exosymbiosis in the fungus growing termites. In: MicrobioL Poecil. ( R. Lesel, ed.), Elsevier Science, Amsterdam.

    Google Scholar 

  • Rouland, C., A. Braumann, M. Labat, M. Lepage. 1993. The production of methane by termites in tropical area. Chemosphere, 26 (1–4): 617–622.

    Article  CAS  Google Scholar 

  • Sackett, W.M., J.M. Brooks. 1975. Origin and distribution of low molecular weight hydrocarbons in Gulf of Mexico coastal waters. In: Marine Chemistry in the Coastal Environment, Chuch Ed, Washington.

    Google Scholar 

  • Schoell, M. 1988. Multiple origins of methane in the earth. In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. GeoL, 71: 1–10.

    Google Scholar 

  • Scranton, M.I., P.G. Brewer. 1977. Occurrence of methane in the near-surface of the western subtropical North Atlantic. Deep Sea Res., 24: 127–138.

    Article  CAS  Google Scholar 

  • Scranton, M.I., J.W. Farrington. 1977. Methane production in the waters off Walvis Bay. J. Geophys. Res., 82:4, 947–4, 953.

    Google Scholar 

  • Scranton, M.I., K. McShane. 1991. Methane fluxes in the southern North Sea: the role of European rivers. Cont. Shelf Res., 11: 37–52.

    Article  Google Scholar 

  • Seiler, W., R. Conrad, D. Scharffe. 1984. Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J. Atmos. Chem., 1: 171–186.

    Article  CAS  Google Scholar 

  • Sherwood, B., P. Fritz, S.K. Frape, J.A. Macko, S.M. Weise, J.A. Welhan. 1988. Methane occurrences in the Canadian Shield. In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. GeoL, 71: 223–23.

    Google Scholar 

  • Simoneit, B.R.T., P.T. Crisp, B.G. Rohrback, B.M. Didyk. 1979. Chilean paraffin dirt–II. Natural gas seepage at an active site and its geochemical consequences. In: Physics and Chemistry of the Earth, Vol. 12: Advances in Geochemistry 1979 (A.G. Douglas and J.R. Maxwell, eds.), (Proc. 9th Internat. Meeting on Organic Geochem., Newcastle, Sept. 1979 ) p 171–176.

    Google Scholar 

  • Smith, K.R., M.A.K. Khalil, R.A. Rasmussen, S.A. Thorneloe, F. Manegdeg, M. Apte. 1993. Greenhouse gases from biomass and fossil fuel stoves in developing countries: a Manila pilot study. Chemosphere, 26 (1–4): 479–506.

    Article  CAS  Google Scholar 

  • Söderberg, P., T. Flóden. 1990. Gas seepages, gas eruptions and pockmarks in the seabed along the Stromma tectonic lineament at Staysnas in the crystalline Stockholm Archipelago, east Sweden. Methane in Marine Sediments Conf., Shallow Gas Group, Edinburgh, Sept 1990.

    Google Scholar 

  • Sokolov, V.A., Z.A. Buniat-Zade, A.A. Geodekian, F.G. Dadashev. 1969. The origin of gases of mud volcanoes and the regularities of the powerful eruptions. In: Advances in Organic Chemistry - 1969 ( P. Schenk and I. Havemar, eds.), Pergamon Press, Oxford, p 473–484.

    Google Scholar 

  • Sokolov, V.T., V. Tichomolova, O.A. Cheremisinov. 1972. The composition and distribution of gaseous hydrocarbons and dependence on depths, as a consequence of their generation and migration. In: Advances in Geochemistry - 1971 ( H.R. Gaertner and H. Wehner, eds.), Pergamon Press, Oxford, p 479–486.

    Google Scholar 

  • Suess, E., G.J. Massoth. 1984. Evidence for venting of pore waters from subducted sediments of the Oregon continental margin. (Abs.) EOS, 65: 1089.

    Google Scholar 

  • Trotsyuk, V.Y., V.I. Avilov. 1988. Disseminated flux of hydrocarbon gases from the sea bottom and a method of measuring it. Trans. (Doklady) U.S.S.R Acad. Sci., Earth Sci. Sect., 291: 218–220.

    Google Scholar 

  • Vidal, F.V., J.A. Welhan, V.N.V. Vidal. 1982. Stable isotopes of helium, nitrogen and carbon in a coastal submarine hydrothermal system. J. Volcano Geother. Res., 12: 101–110.

    Article  CAS  Google Scholar 

  • Vyshemirskiy, V.S., R.S. Khakimzyanova, V.F. Shugurov. 1989. A gas survey of snow cover in the Kuznetsk Basin. Trans. (Doklady) U.S.S.R Acad. Sci., Earth Sci. Sect., 309: 172–174.

    Google Scholar 

  • Watkins, J.S., J.L. Worzel. 1978. Serendipity gas seep area, South Texas offshore. Am. Assoc. Petrol. Geol. (Bull.), 62: 1067–1074.

    Google Scholar 

  • Welhan, J.A. 1988. Origins of methane in hydrothermal systems. In: Origins of Methane in the Earth (M. Schoell, ed.), Chem. Geol., 71: 183–198.

    Google Scholar 

  • Welhan, J.A., H. Craig. 1983. Methane hydrogen and helium in hydrothermal fluids at 21 N on the East Pacific Rise. In: Hydrothermal Processes at Seafloor Spreading Centers (Rana et al., eds.), Plenum Press, New York, p 391–409.

    Google Scholar 

  • Whalen, M., M. Tanaka, B. Henry, B. Deck, J. Zeglen, J.S. Vogel, J. Southon, A. Shemesh, R. Fairbanks, W. Broecker. 1989. Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286–290.

    Article  Google Scholar 

  • Wilson, R.D., P.H. Monaghan, A. Osanik, L.C. Price, M.A. Rogers. 1974. Natural marine oil seepage. Science, 184: 857–865.

    Article  PubMed  CAS  Google Scholar 

  • Winn, C.D., D.M. Karl, G.J. Massoth. 1986. Microorganisms in deep-sea hydrothermal plumes. Nature, 320: 744–746.

    Article  Google Scholar 

  • Wood, T.G., R.A. Johnson, C.E. Ohiagu. 1977. Populations of termites in natural and agricultural ecosystems in southern guinea savanna near Mokwa, Nigeria. Geol. Ecol. Trop., 1: 139–148.

    CAS  Google Scholar 

  • Wood, T.G., R.A. Johnson, S. Bacchus, M.O. Shittu, J.M. Anderson. 1982. Abundance and distribution of termites in riparian forest near Rabba in the Southern Guinea savanna vegetation zone of Nigeria. Biol. Trop., 14: 25–39.

    Google Scholar 

  • Zor’kin, L.M., F.G. Dadashev, A.A. Dadashev, Krylova. 1985. Peculiarities of the isotopic concentration of methane from petrogas-condensate and gas condensate deposits of Azerbaijan. Dan SSR, 280: 1225–1228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Judd, A.G., Charlier, R.H., Lacroix, A., Lambert, G., Rouland, C. (1993). Minor Sources of Methane. In: Khalil, M.A.K. (eds) Atmospheric Methane: Sources, Sinks, and Role in Global Change. NATO ASI Series, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84605-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84605-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84607-6

  • Online ISBN: 978-3-642-84605-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics