Skip to main content

Bidens alba (Smooth Beggar-Tick) and Bidens pilosa (Hairy Beggar-Tick)

  • Chapter
Medicinal and Aromatic Plants III

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 15))

  • 530 Accesses

Abstract

The genus Bidens (Compositae) is composed of approximately 230 species having a worldwide distribution in tropical and temperate regions. It is primarily a continental group, which has become established on some islands, notably the Hawaiian islands. The centers of diversity are Africa and the New World, with each center having about 100 species (Gillett 1975). Several species are so abundant that they are considered serious weeds. Two will be of particular concern here: Bidens alba var. radiata (Schultz-Bip.) Ballard (Ballard 1986) (Fig. 1) and B. pilosa var. minor (Blume) Sherff, another member of the complex. B. alba var. radiata (smooth beggar-tick) occurs in south eastern Mexico into Central America and in Florida, U.S.A.; B. pilosa var. minor (hairy beggar-tick) is primarily restricted to Central America (Ballard 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akobundu IO (1987) Weed science in the tropics: principles and practices. John Wiley & Sons, Chichester New York.

    Google Scholar 

  • Arnason T, Wat C-K, Downum K, Yamamoto E, Graham E, Towers GHN (1980) Photosensitization of Escherichia coli and Saccharomyces cerevisiae by phenylheptatriyne from Bidens pilosa. Can J Microbiol 26:698–705.

    Article  PubMed  CAS  Google Scholar 

  • Arnason T, Stein JR, Graham E, Wat C-H, Towers GHN, Lam J (1981a) Phototoxicity to selected marine and freshwater algae of polyacetylenes from species in the Asteraceae. Can J Bot 59:54–58.

    Article  CAS  Google Scholar 

  • Arnason T, Swain T, Wat C-K, Graham EA, Partington S, Towers GHN (1981b) Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae. Biochem Syst Ecol 9:63–68.

    Article  CAS  Google Scholar 

  • Arnason JT, Bourque GJ, Madhosingh C, Orr W (1986) Disruption of membrane functions in Fusarium culmorum by an acetylenic allelochemical. Biochem Syst Ecol 14:569–574.

    Article  CAS  Google Scholar 

  • Ballard R (1986) Bidens pilosa complex (Asteraceae) in North and Central America. Am J Bot 73:1452–1465.

    Article  Google Scholar 

  • Bohlmann F, Kleine K-M (1964) Ãœber zwei neue Polyinacetate. Chem Ber 97:1193–1196.

    Article  CAS  Google Scholar 

  • Bohlmann F, Zdero C (1975) Ein neues Eugenol-Derivat aus Bidens aurea (Ait.) Sherff. Chem Ber 95:1315–1319.

    Article  Google Scholar 

  • Bohlmann F, Arndt C, Bornowski H, Kleine K-M (1962) Ãœber die Polyine der Gattung Bidens L. Chem Ber 95:1315–1319.

    Article  CAS  Google Scholar 

  • Bohlmann F, Bornowski H, Kleine K-M (1964) Ãœber neue Polyine aus dem Tribus Heliantheae. Chem Ber 97:2135–2138.

    Article  CAS  Google Scholar 

  • Bohlmann F, Arndt C, Kleine K-M, Wotschokowsky M (1965) Neue Inhaltstoffe aus Bidens-arten. Chem Ber 98:1228–1232.

    Article  Google Scholar 

  • Bohlmann F, Burkhardt F, Zdero C (1973) Naturally occurring acetylenes. Academic Press, New York London.

    Google Scholar 

  • Bohlmann F, Ahmed M, King RM, Robinson H (1983) Acetylenic compounds from Bidens graveolens. Phytochemistry 22:1281–1283.

    Article  CAS  Google Scholar 

  • Bonasera J, Lynch J, Leck MA (1979) Comparison of the allelopathic potential of four marsh species. Bull Torrey Bot Club 106:217–222.

    Article  Google Scholar 

  • Bourque G, Arnason JT (1985) The photosensitization of the plant pathogen Fusarium culmorum by phenylheptatriyne from Bidens pilosa. Can J Bot 63:899–902.

    CAS  Google Scholar 

  • Bushnell OA, Fukuda M, Makinodan T (1950) The antibacterial properties of some plants found in Hawaii. Pac Sci 4:167–183.

    Google Scholar 

  • Camm EL, Towers GHN, Mitchell JC (1975) UV-mediated antibiotic activity of some Compositae species. Phytochemistry 14:2007–2011.

    Article  CAS  Google Scholar 

  • Campbell G, Lambert JDH, Arnason T, Towers GHN (1982) Allelopathic properties of α-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. J Chem Ecol 8:961–972.

    Article  CAS  Google Scholar 

  • Carlson HJ, Douglas HG (1948) Screening methods for determining antibiotic activity of higher plants. J Bacteriol 55:235–240.

    Google Scholar 

  • Carlson HJ, Douglas HG, Robertson J (1948) Antibacterial substances separated from plants. J Bacteriol 55:241–248.

    Google Scholar 

  • Constabel CP, Towers GHN (1988) Thiarubrine accumulation in hairy root cultures of Chaenactis douglassi. J Plant Physiol 133:67–72.

    CAS  Google Scholar 

  • Cosio EG, Norton RA, Towers E, Finlayson AJ, Rodriguez E, Towers GHN (1986) Production of antibiotic thiarubrines by a crown gall tumor line of Chaenactis douglasii. J Plant Physiol 124:155–164.

    CAS  Google Scholar 

  • Craveiro AA, Andrade CHS, Matos FJA, Alencar JW, Machado MIL (1986) Essential oils from Brazilian Compositae. J Nat Prod 49:361–363.

    Article  Google Scholar 

  • Crawford DJ, Stuessy TF (1981) The taxonomic significance of anthochlors in the subtribe Coreop-sidinae (Compositae, Heliantheae). Am J Bot 68:107–117.

    Article  CAS  Google Scholar 

  • Degener O (1975) Plants of Hawaii National Parks. Braun-Brumfield, Honolulu.

    Google Scholar 

  • DiCosmo F, Norton R, Towers GHN (1982) Fungal culture-filtrate elicits aromatic polyacetylenes in plant tissue culture. Naturwissenschaften 69:550–551.

    Article  CAS  Google Scholar 

  • Duke JA (1986) Isthmian ethnobotanical dictionary, 3rd edn. Scientific Publishers, Jodhpur.

    Google Scholar 

  • Farnsworth NR, Henry LK, Svoboda GH, Blomster RN, Yates MJ, Euler KL (1966) Biological and phytochemical evaluation of plants. I. Biological test procedures and results from two hundred accessions. Lloydia 29:101–122.

    Google Scholar 

  • Fleischer A (1981) Preparations comprising as active ingredients an extract derived from plant of the Bidens species or 1-phenylheptatriyne (natural or synthetic). Chem Abstr 94:357.

    Google Scholar 

  • Flores H (1987) Use of plant cells and organ culture in the production of biological chemicals. In: Lebaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in agricultural chemistry, ACS Symp Ser 334, Am Chem Soc, Washington DC, pp 66–86.

    Chapter  Google Scholar 

  • Flores HE, Hoy MW, Pickard JJ (1986) Production of secondary metabolites by normal and transformed root cultures. In: Somers D, Gegenbach BG, Bisboer DD, Hackett WP, Green CE (eds) Proc 6th Int Congr Plant tissue and cell culture. Univ Minn, Minneapolis, p 117.

    Google Scholar 

  • Fong HHS, Farnsworth NR, Henry LK, Svoboda GH, Yates MJ (1972) Biological and phytochemical evaluation of plants. X. Test results from a third two-hundred accessions. Lloydia 35:35–48.

    PubMed  CAS  Google Scholar 

  • Gillett GW (1975) The Diversity and History of Polynesian Bidens, Section Campylotheca. HA Lyon Arbor, Univ Hawaii.

    Google Scholar 

  • Goode PM (1989) Edible Plants of Uganda. FAO, Rome.

    Google Scholar 

  • Graham K, Graham EA, Towers GHN (1980) Cercaricidal activity of phenylheptatriyne and α-terthienyl, naturally occurring compounds in species of Asteraceae (Compositae). Can J Zool 11:1955–1958.

    Article  Google Scholar 

  • Heal RE, Rogers EF, Wallace RT, Starnes O (1950) A survey of plants for insecticidal activity. Lloydia 13:89–162.

    Google Scholar 

  • Holm L, Pancho JV, Herberger JP, Plucknett DL (1979) A Geographical Atlas of World Weeds. John Wiley & Sons, New York.

    Google Scholar 

  • Hudson JB, Graham EA, Chan G, Finlayson AJ, Towers GHN (1986a) Comparison of the antiviral effects of naturally occurring thiophenes and polyacetylenes. Planta Med 453-457.

    Google Scholar 

  • Hudson JB, Graham EA, Towers GHN (1986b) Investigation of the antiviral action of the photoactive compound phenylheptatriyne. Photochem Photobiol 43:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Ichihara K-I, Noda M (1977) Distribution and metabolism of polyacetylenes in safflower. Biochem Biophys Acta 487:249–260.

    PubMed  CAS  Google Scholar 

  • Ingham JL (1972) Phytoalexins and other natural products as factors in plant disease resistance. Bot Rev 38:344–394.

    Article  Google Scholar 

  • Jensen SL, Sörensen A (1961) Studies related to naturally occurring acetylene compounds: XXIX. Preliminary investigations in the genus Bidens: I. Bidens radiata Thuill and Bidens ferulaefolia (Jacq.) DC. Acta Chem Scand 15:1885–1981.

    Article  CAS  Google Scholar 

  • Jente R (1971) Polyacetylenverbindungen in gewebekulturen von Centaurea ruthenica Lam. Tetrahedron 27:4077–4083.

    Article  CAS  Google Scholar 

  • Jones ERH, Thaller V (1978) Natural acetylenes. In: Patai S (ed) The Chemistry of the Carbon-Carbon Triple Bond. John Wiley & Sons, New York, pp 621–633.

    Google Scholar 

  • Kado DI (1976) The tumor-inducing substance of Agrobacterium tumefaciens. Annu Rev Phytopathol 14:268–308.

    Article  Google Scholar 

  • Kagan J, Chan G (1983) The photoovicidal activity of plant components towards Drosophila melanogaster. Experientia 39:402–403.

    Article  CAS  Google Scholar 

  • Kahl H (1987) Allelopathic effects in the maize-quelites-agroecosystem of the Tarahumara Indians. J Agron Crop Sci 158:56–64.

    Article  Google Scholar 

  • Ketel KH (1988) Accumulation of thiophenes by cell cultures of Tagetes patula and the release of 5-(4-hydroxy-l-butynyl)-2,2′-bithiophene into the medium. Planta Med 400-405.

    Google Scholar 

  • Klein RM, Link GKK (1955) The etiology of crown-gall. Q Rev Biol 30:207–277.

    Article  CAS  Google Scholar 

  • Krikorian AD, Steward FC (1969) Biochemical differentiation: the biosynthetic potentialities of growing and quiescent tissue. In: Steward FC (ed) Plant physiology: a treatise, Vol VB. Academic Press, New York London, pp 227–326.

    Google Scholar 

  • Marchant YY, Towers GHN (1986) Phototoxicity of polyacetylene to Cryptococcus laurentii. Biochem Syst Ecol 14:565–568.

    Article  CAS  Google Scholar 

  • Marchant YY, Towers GHN (1987) Phylloplane fungi of Hawaiian plants and their photosensitivity to polyacetylenes from Bidens species. Biochem Syst Ecol 15:9–14.

    Article  Google Scholar 

  • Marchant YY, Ganders FR, Wat C-K, Towers GHN (1984) Polyacetylenes in Hawaiian Bidens. Biochem Syst Ecol 12:167–178.

    Article  CAS  Google Scholar 

  • Meissner R, Nel PC, Beyers EA (1986) Allelopathic influence of Tagetes-and Bidens-infested soils on seedling growth of certain crop species. S Afr J Plant Soil 3:176–180.

    Google Scholar 

  • Mirvish SS, Rose EF, Sutherland DM (1979) Studies on the esophagus. II. Enhancement of [3H] thymidine incorporation in the rat esophagus by Bidens pilosa (a plant eaten in South Africa) and by croton oil. Cancer Lett 6:159–165.

    Article  PubMed  CAS  Google Scholar 

  • Mirvish SS, Salmasi S, Lawson TA, Pour P, Sutherland D (1985) Test of catechol, tannic acid, Bidens pilosa, croton oil, an phorbol for cocarcinogenesis of esophageal tumors induced in rats by methyl-n-amylnitrosamine. J Nat Cancer Inst 74:1283–1290.

    PubMed  CAS  Google Scholar 

  • Misawa M (1977) Production of natural substances by plant cell cultures described in Japanese patents. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its bio-technological application. Springer, Berlin Heidelberg New York, pp 17–26.

    Chapter  Google Scholar 

  • Morton JF (1962) Spanish needles (Bidens pilosa L.) as a wild food resource. Econ Bot 16:173–179.

    Article  Google Scholar 

  • Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7:9–12.

    Article  Google Scholar 

  • Nakajima S, Kawazu K (1980) Insect development inhibitors from Coreopsis lanceolata L. Agric Biol Chem 44:1529–1533.

    Article  CAS  Google Scholar 

  • Norton RA, Towers GHN (1984) Transmission of nopaline crown gall tumour markers through meiosis in regenerated whole plants of Bidens alba. Can J Bot 62:408–413.

    Article  Google Scholar 

  • Norton RA, Towers GHN (1985) Synthesis of polyacetylenes in tumor callus of Bidens alba. J Plant Physiol 120:273–283.

    CAS  Google Scholar 

  • Norton RA, Towers GHN (1986) Factors affecting synthesis polyacetylenes in root cultures of Bidens alba. J Plant Physiol 122:41–53.

    CAS  Google Scholar 

  • Norton RA, Finlayson AJ, Towers GHN (1985a) Two dithiacyclohexadiene polyacetylenes from Chaenactis douglasii and Eriophyllum lanatum. Phytochemistry 24:356–357.

    Article  CAS  Google Scholar 

  • Norton RA, Finlayson AJ, Towers GHN (1985b) Thiophene production by crown galls and callus tissues of Tagetes patula. Phytochemistry 24:719–722.

    Article  CAS  Google Scholar 

  • Norton RA, Huang DQ, Towers GHN, Rodriguez E (1990) In vitro propagation and production of antibiotic polyines by root cultures of A spilia mossambicensis. (submitted).

    Google Scholar 

  • Oliveira JS, DeCarvalho MD (1975) Nutritional value of some edible leaves used in Mozambique. Econ Bot 29:255–263.

    Article  CAS  Google Scholar 

  • Pagani F, Romussi G (1971) New polyinic D-glucoside from Bidens frondosa flowers. Phytochemistry 10:2233.

    Article  CAS  Google Scholar 

  • Pagani F, Romussi G, Bohlmann F (1972) Notiz über die Struktur des Polyin-Glucosids aus Bidens frondosa. Chem Ber 105:3126–3127.

    Article  CAS  Google Scholar 

  • Parodi FJ, Fischer NH (1988) Benzofuran and bithiophenes from root cultures of Tagetes patula. J Nat Prod 51:594–595.

    Article  CAS  Google Scholar 

  • Parry DW, O’Neill CH, Hodson MJ (1986) Opaline silica deposits in the leaves of Bidens pilosa L. and their possible significance in cancer. Ann Bot (London) 58:641–647.

    Google Scholar 

  • Pates AL, Madsen GC (1955) Occurrence of antimicrobial substances in chlorophyllose plants growing in Florida. II. Bot Gaz 116:250–261.

    Article  Google Scholar 

  • Reichling J, Beiderbeck R, Becker H (1979) Comparative studies on secondary products from tumors, flowers, herb and roots of Matricaria chamomilla L. Planta Med 36:322–332 (in German).

    Article  CAS  Google Scholar 

  • Rose EF, Guillarmod AJ (1974) Plants gathered as foodstuffs by the Transkeian peoples. S Afr Med J 86:1688–1690.

    Google Scholar 

  • Schenk RV, Hildebrandt AC (1972) Medium and techniques for induction and growth of monoco-tyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204.

    Article  CAS  Google Scholar 

  • Setia B (1978) Polyacetylen von Tagetes erecta and Tagetes patula nana; Biosynthese der Theiophen-derivate and Polyacetylen von Tagetes erecta durch Zellkulturen. Thesis, Univ Münster.

    Google Scholar 

  • Solevilla RC (1984) Research on the analgesic, antipyretic and/or anti-inflammatory activities of the four Philippine medicinal plants — Ipomoea muricata (L.) Jacq. (Convolvulaceae), Bidens pilosa L. (Compositae), Calophyllum inophyllum L. (Guttiferae) and Tinospora rumphii Boerl. (Menispermaceae). Acta Manilana: 79-81.

    Google Scholar 

  • Sörensen JS, Sörensen NA (1958a) Studies related to naturally occurring acetylene compounds XXIII. 1-phenylhepta-1:3:5-triyne from Coreopsis grandflora, Hogg ex Sweet. Acta Chem Scand 12:765–770.

    Article  Google Scholar 

  • Sörensen JS, Sörensen A (1958b) Ibid. XXIV. 2-phenyl-5(-propynl)-thiophene from the essential oils of Coreopsis grandiflora, Hogg ex Sweet. Acta Chem Scand 12:771–776.

    Article  Google Scholar 

  • Sörensen NA (1977) Polyacetylenes and conservation of chemical characters in the compositae. In: Heywood VH, Harborne JB, Turner BL (eds) The biology and chemistry of the compositae, vol 1. Academic Press, New York London, pp 385–433.

    Google Scholar 

  • Stevens GA Jr, Tang C-S (1985) Inhibition of seedling growth of crop species by recirculating root exudates of Bidens pilosa L. J Chem Ecol 11:1411–1425.

    Article  CAS  Google Scholar 

  • Tietjen K, Matern U (1981) Mode of action of Alternaria carthami toxin in safflower (Carthamus tinctorius L.). Phytochem Soc N Am Newslett, July, Abstr C-23.

    Google Scholar 

  • Towers GHN (1980) Photosensitizers from plants and their photodynamic action. Prog Phytochem 6:183–202.

    CAS  Google Scholar 

  • Towers GHN, Wat C-K, Graham EA, Bandoni RJ, Chang GFQ, Mitchell JC, Lam J (1977) Ultraviolet-mediated antibiotic activity of species of Compositae caused by polyacetylenic compounds. Lloydia 40:487–498.

    PubMed  CAS  Google Scholar 

  • Warren RAJ, Hudson JB, Downum K, Graham EA, Norton R, Towers GHN (1980) Bacteriophages as indicators of the mechanism of action of photosensitizing agents. Photobiochem Photobiophys 1:385–389.

    CAS  Google Scholar 

  • Wat C-K, Biswas RK, Graham EA, Bohm L, Towers GHN, Waygood ER (1979) Ultraviolet-mediated cytotoxic activity of phenyl-heptatriyne from Bidens pilosa L. J Nat Prod 42:103–111.

    Article  PubMed  CAS  Google Scholar 

  • Wat C-K, Johns T, Towers GHN (1980) Phototoxic and antibiotic activities of plants of the Asteraceae used in folk medicine. J Ethnopharm 2:279–290.

    Article  CAS  Google Scholar 

  • Weete JD (1980) Lipid Biochemistry of Fungi and other Organisms. Plenum, New York London.

    Google Scholar 

  • Zito SW, Staba EJ (1982) Thebaine from root cultures of Papayer bracteatum. Planta Med 45:53–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Norton, R.A. (1991). Bidens alba (Smooth Beggar-Tick) and Bidens pilosa (Hairy Beggar-Tick). In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants III. Biotechnology in Agriculture and Forestry, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84071-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84071-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84073-9

  • Online ISBN: 978-3-642-84071-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics