Skip to main content

Assembling a Rearrangement

  • Chapter
Analysis and Continuum Mechanics
  • 535 Accesses

Abstract

Rearrangements of functions have proved to be a fairly interesting tool in analysis. Systematically introduced by Hardy & Littlewood, they have been used by a number of authors in real and harmonic analysis, in investigations about singular integrals, function spaces and interpolation theory. See [2, 3, 5–8] for instance. Pólya & Szegö and their followers have demonstrated a good many isoperimetric theorems and inequalities by means of rearrangements—[9] is a source book for this matter. More recent investigations have shown that rearrangements of functions also fit well into the theory of elliptic second-order partial differential equations. See [4, 11], for example, and the references cited therein.

A James Serrin, con stima ed amicizia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Chiti, Rearrangements of functions and convergence in Orlicz spaces (Appl. Anal. 9, 1979 ).

    Google Scholar 

  2. Hardy, Littlewood, Pólya, Inequalities (Cambridge Univ. Press, 1964 ).

    Google Scholar 

  3. C. Herz, The Hardy-Littlewood maximal theorem (Symposium on Harmonic Analysis, Univ. of Warwick, 1968 ).

    Google Scholar 

  4. B. Kawohl, Rearrangements and convexity of level sets in PDE (Lecture Notes in Math. 1150, Springer-Verlag, 1985).

    MATH  Google Scholar 

  5. R. O’Neil, Adjoint operators and interpolation of linear operators (ISNM vol. 10, 1969 ).

    Google Scholar 

  6. R. O’Neil, Convolution operators and L(p, q) spaces (Duke Math. J. 30, 1963 ).

    Google Scholar 

  7. R. O’Neil, Integral transforms and tensor products on Orlicz and L(p, q) spaces (J. Analyse Math. 21, 1968 ).

    Google Scholar 

  8. R. O’Neil & G. Weiss, The Hilbert transform and rearrangement of function (Studia Math. 23, 1963 ).

    Google Scholar 

  9. G. Pólya & G. Szegö, Isoperimetric inequalities in mathematical physics (Princeton Univ. Press, 1951 ).

    MATH  Google Scholar 

  10. C. Somigliana, Sulle funzioni reali d’una variabile (Rendiconti R. Accademia dei Lincei, vol. 8, 1899).

    Google Scholar 

  11. G. Talenti, Linear elliptic p.d.e.’s: level sets, rearrangements and a priori estimates of solutions (Boll. U.M.I., 4-B, 1985 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talenti, G. (1989). Assembling a Rearrangement. In: Analysis and Continuum Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83743-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83743-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50917-2

  • Online ISBN: 978-3-642-83743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics