Skip to main content

Part of the book series: Communications and Control Engineering Series ((CCE))

  • 446 Accesses

Abstract

The original motivation for the development of analog MOS circuits was the desire to realize fully integrated linear filters. At present, however, the majority of signal processor systems also contain other functional building blocks apart from linear filters such as comparators, Schmitt triggers, rectifiers, peak detectors, modulators, multipliers, oscillators etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Sources for Further Reading

  1. Martin, K.; Sedra, A.S.: Switched-capacitor building blocks for adaptive systems IEEE Trans. Circuits and Systems CAS-28 (1981) 576–584

    Article  Google Scholar 

  2. Hosticka, B.J.; Brockherde, W.; Kleine, U.; Schweer, R.: Design of nonlinear analog switched-capacitor circuits using building blocks. IEEE Trans. Circuits and Systems CAS-31 (1984) 354–368

    Article  Google Scholar 

  3. Hosticka, B.J.: Nonlinear analog MOS circuits (in Design of VLSI Circuits for Telecommunication, (Eds. Y. Tsividis, P. Antognetti ). Englewood Cliffs: Prentice-Hall (1985)

    Google Scholar 

  4. Gray, P.R.; Hodges, D.A.; Brodersen, R.W.: Analog MOS Integrated Circuits. New York: IEEE Press (1980)

    Google Scholar 

  5. Gregorian, R.; Martin, K.W.; Ternes G.C.: Switched-capacitor circuit design. Proceedings of IEEE 71 (1983) 941–966

    Article  Google Scholar 

  6. Hosticka, B.J.; Brockherde, W.; Kleine, U.; Zimmer, G.: Switched-capacitor FSK modulator and demodulator in CMOS technology. IEEE J Solid-State Circuits SC-19 (1984) 389–396

    Google Scholar 

  7. Martin, K.: Non-filtering applications of switched-capacitor circuits: a tutorial overview emphasizing technological constraints. IEEE Proc. Int. Symposium on Circuits and Systems, Montreal, Canada (1984) 162–165

    Google Scholar 

  8. Huertas, J.L.; Chua, L.O.; Rodriguez-Vazquez, A.B.; Rueda, A.: Nonlinear switched-capacitor networks: basic principles and piecewise-linear design. IEEE Trans. Circuits and Systems CAS-32 (1985) 305–319

    Google Scholar 

  9. Rodriguez-Vazquez, A.; Huertas, J.L.; Chua, L.O.: On a class of SC resistors and its application to the synthesis of non-linear driving-point and transfer-characteristic plots. Int. J. Circuit Theory and Applications 13 (1985) 309–326

    Article  MATH  Google Scholar 

  10. Yee, Y.S.; Terman, L.M.; Heller, L.G.: A 1mV MOS comparator. IEEE J. Solid-State Circuits SC-13 (1978) 294–297

    Google Scholar 

  11. Allstot, D.J.: A precision variable-supply CMOS comparator. IEEE J. Solid-State Circuits SC-17 (1982) 1080–1087

    Google Scholar 

  12. Landsburg, G.F.: A charge-balancing monolithic A/D converter. IEEE J. Solid-State Circuits SC-12 (1977) 662–673

    Google Scholar 

  13. Vittoz, EA.: The design of high-performance analog circuits on digital CMOS chips. IEEE J. Solid-State Circuits SC-20 (1985) 657–665

    Google Scholar 

  14. Ng, W.T.; Salama, CA.T.: High-speed high-resolution CMOS voltage comparator. Electronics Letters 22 (1986) 338–339

    Article  Google Scholar 

  15. Allen, P.E.; Holberg, D.R.: CMOS Analog Circuit Design. New York: Holt, Rinehart and Winston (1987)

    Google Scholar 

  16. Antoniou, A.: Design of precision rectifiers using operational amplifiers. Proceedings of IEE 121 (1974) 1041–1044

    Google Scholar 

  17. Chari, MA.; Nagaraj, K.; Viswanathan, T.R.: Broad-band precision rectifier. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 824–826

    Google Scholar 

  18. Kuraishi, Y.; Makabe, T.; Nakayama, K.: A single-chip NMOS analog front-end LSI for modems. IEEE J. Solid-State Circuits SC-17 (1982) 1039–1044

    Google Scholar 

  19. Nossek, JA.; Betzl, H.: Speech encoding by voiceband inversion using switched-capacitor techniques. Proc. European Conf. on Circuit Theory and Design ECCTD-83, Stuttgart, W. Germany (1983) 189–191

    Google Scholar 

  20. Vannerson, E.; Smith, K.C.: A low-distortion oscillator with fast amplitude stabilization. Int. J. Electronics 39 (1975) 465–472

    Article  Google Scholar 

  21. Filanovsky, I.M.; Piskarev, VA.; Stromsmoe, KA.: On the fast amplitude control in RC-oscillators. IEEE Proc. Int. Symposium on Circuits and Systems, Rome, Italy (1982) 819–822

    Google Scholar 

  22. Silva-Martinez, J.; Sanchez-Sinencio, E.: SC relaxation oscillators without excess phase jitter. Proc. Int. Symp. on Circuits and Systems, San Jose, USA (1986) 813–816

    Google Scholar 

  23. Sandler, H.M.; Sedra, A.S.: Sine-wave generation using a high-order lowpass switched-capacitor filter. Electronics Letters 22 (1986) 635–636

    Article  Google Scholar 

  24. Mikhael, W.B.; Tu, S.: Continuous and switched-capacitor multiphase oscillators. IEEE Trans. Circuits and Systems CAS-31 (1984) 280–293

    Google Scholar 

  25. Vittoz, EA.: Micropower switched-capacitor oscillator. IEEE J. Solid-State Circuits SC-14 (1979) 622–624

    Google Scholar 

  26. Martin, K.: A voltage-controlled switched-capacitor relaxation oscillator. IEEE J. Solid-State Circuits SC-16 (1981) 412–414

    Google Scholar 

  27. Fleischer, P.E.; Ganesan, A.; Laker, K.R.: A switched capacitor oscillator with precision amplitude control and guaranteed start-up. IEEE J. Solid-State Circuits SC-20 (1985) 641–647

    Google Scholar 

  28. Krummenacher, F.: A high-resolution capacitance-to-frequency converter. IEEE J. Solid-State Circuits SC-20 (1985) 666–670

    Google Scholar 

  29. Fattaruso, J.W.; Meyer, R.G.: Triangle-to-sine wave conversion with MOS technology. IEEE J. Solid-State Circuits SC-20 (1983) 623–631

    Google Scholar 

  30. Nathan, A.; McKay, IA.; Filanovsky, I.M.; Baltes, H.P.: Design of a CMOS oscillator with magnetic-field frequency modulation. IEEE J. Solid-State Circuits SC-22 (1987) 230–232

    Google Scholar 

  31. Allen, P.E.; Rafat, HA.; Bily, S.F.: A switched-capacitor waveform generator. IEEE Trans. Circuits and Systems CAS-32 (1985) 103–105

    Google Scholar 

  32. Abidi, AA.; Meyer, R.G.: Noise in relaxation oscillators. IEEE J Solid-State Circuits SC-18 (1983) 794–802

    Google Scholar 

  33. Cheng, W.W.; Larson, L.E.: A low-frequency CMOS triangle wave generator. IEEE J Solid-State Circuits SC-20 (1985) 649–652

    Google Scholar 

  34. Abidi, AA.: Linearization of voltage-controlled oscillators using switched-capacitor feedback. IEEE J. Solid-State Circuits SC-22 (1987) 494–496

    Google Scholar 

  35. Molnar, K.L.J.: Versatile exponential time-function generator using two sample-hold circuits. IEEE Trans. Instrumentation and Measurement IM-35 (1986) 46–51

    Google Scholar 

  36. Pookaiyaudom, S.; Jantarang, S.: Simulations for sinusoidal oscillators with random numbers and initial impulses IEEE Circuits and Devices Magazine (1986) 34–40

    Google Scholar 

  37. Koch, R.; Heise, B.; Eckbauer, F.; Engelhardt, E.; Fisher, JA.; Parzefall, F.: A 12-bit sigma-delta analog-to-digital converter with a 15-MHz clock rate. IEEE J Solid-State Circuits SC-21 (1986) 1003–1010

    Google Scholar 

  38. Sheingold, D.H. (ed.): Nonlinear circuits Handbook. Analog Devices, Inc.: Norwood, MA, (1976)

    Google Scholar 

  39. Gardner, F.M.: Phaselock Techniques. New York: John Wiley (1980)

    Google Scholar 

  40. Lindsey, W.C.; Chic, C.M. (eds.): Phase-Locked Loops. New York- IEEE Press (1986)

    Google Scholar 

  41. Smith, J.: Modern Communication Circuits. New York: McGraw-Hill (1986)

    Google Scholar 

  42. Viswanathan, T.R.; Martuza, S.; Syed, V.H.; Berry, J.; Staszel, M.: Switched-capacitor frequency control loop. IEEE J. Solid-State Circuits SC-17 (1982) 775–778

    Google Scholar 

  43. Mulawka, J.J.; Pakulak, A.: Switched-capacitor implementation of phase-locked loops. IEE Proc. G. Electronic Circuits and Systems 131 (1984) 221–225

    Article  Google Scholar 

  44. Joeng, D.K.; Borriello, G.; Hodges, DA.; Katz, R.H.: Design of PLL-based clock generation circuits. IEEE J. Solid-State Circuits SC-22 (1987) 255–261

    Google Scholar 

  45. Korn, GA.; Korn, T.M.: Electronic Analog and Hybrid Computers. New York: McGraw-Hill (1964)

    MATH  Google Scholar 

  46. Stabrowski, M.M.: Modern numerical analysis of time-division multipliers. IEEE Trans. Instrumentation and Measurement IM-28 (1979) 74–78

    Google Scholar 

  47. Johnson, G.J.: Analysis of the modified Tomota-Sugiyama-Yamaguchi multiplier. IEEE Trans. Instrumentation and Measurement IM-33 (1984) 11–16

    Google Scholar 

  48. Enomoto, T.; Yasumoto, M.-A.: Integrated MOS four-quadrant analog multiplier using switched capacitor technology for analog signal processor IC’s. IEEE J. Solid-State Circuits SC-20 (1985) 852–859

    Google Scholar 

  49. Enomoto, T.; Yasumoto, M.-A.; Ishihara, T.; Watanabe, K.: Monolithic analog adaptive equalizer integrated circuit for wide-band digital communication networks. IEEE J Solid-State Circuits SC-17 (1982) 1045–1054

    Google Scholar 

  50. Cichocki, A.; Unbehauen, R.: A novel switched-capacitor four-quadrant analog multiplier-divider and some of its applications. IEEE Trans. Instrumentation and Measurement IM-35 (1986) 156–162

    Google Scholar 

  51. Brodarac, D.; Herbst, D.; Hosticka, Bi.; Hoefflinger, B.: Novel sampled-data MOS multiplier. Electronics Letters 18 (1982) 229–230

    Google Scholar 

  52. Yamakawa, T.; Ueno, F.: Applications of first-quadrant analog multiplier/divider to an RMS dc converter. Trans. IECE of Japan E 65 (1982) 588–589

    Google Scholar 

  53. Watanabe, K.; Ternes, G.C.: A switched-capacitor multiplier/divider with digital and analog outputs. IEEE Trans. Circuits and Systems CAS-31 (1984) 796–800

    Google Scholar 

  54. Dekker, L.: Multiplying and integrating in a hybrid way. Ann. Assoc. Int. Calcul. Anal. 7 (1965) 186–189

    Google Scholar 

  55. Bekey, GA.: Generalized integration on the analog computer. IRE Trans. Electronic Computers EC-8 (1959) 210–217

    Google Scholar 

  56. Paul, R.JA.; Gatland, H.B.: Design and some applications of a generalised integrator. Proceedings of IEE 114 (1967) 1193–1205

    Google Scholar 

  57. Ahmad, A.S.; Kadhom, AA.: Incremental generalized integrator. Computer-Aided Design 18 (1986) 424–430

    Article  Google Scholar 

  58. Cichocki, A.; Unbehauen, R.: Novel switched-capacitor generalised integrator. Electronics Letters 21 (1985) 158–159

    Article  Google Scholar 

  59. Cichocki, A.; Unbehauen, R.: Design of precision switched-capacitor generalised integrators and their applications to the synthesis of nonlinear networks. IEE Proc., Pt.G, 132 (1985) 225–236

    Google Scholar 

  60. Cichocki, A.; Unbehauen, R.: MOS SC microsystem for generating of trigonometrical functions and their inverses. Electronics Letters 22 (1986) 1056–1057

    Article  Google Scholar 

  61. Unbehauen, R.; Cichocki, A.: Ein Beitrag zur Synthese von SC-Netzwerken zur linearen and nichtlinearen Signalverarbeitung. ntz-Archiv 8 (1986) 271–285

    Google Scholar 

  62. Candy, J.C.: A use of double integration in sigma delta modulation. IEEE Trans. on Communications COM-33 (1985) 249–258

    Google Scholar 

  63. Hauser, M.W.; Brodersen, R.W.: Circuit and technology considerations for MOS delta sigma A/D converters. IEEE Proc. Int. Symposium Circuits and Systems, San Jose, USA (1986) 1310–1315

    Google Scholar 

  64. Gray, R.M.: Oversampled sigma-delta modulation. IEEE Trans. on Communications COM35 (1987) 481–489

    Article  MATH  Google Scholar 

  65. Tan, K.S.; Gray, P.R.: Fully integrated analog filters using bipolar-JFET technology. IEEE J. Solid-State Circuits SC-13 (1978) 814–821

    Article  Google Scholar 

  66. Khorramabadi, H.; Gray, P.R.: High-frequency CMOS continuous-time filters. IEEE J. Solid-State Circuits SC-19 (1984) 939–948

    Article  Google Scholar 

  67. Kellner, W.: A continuous-time analog filter using MOS technology. Frequenz 35 (1981) 340–343

    Article  Google Scholar 

  68. Tsividis, Y.; Banu, M.; Khoury, J.: Continuous-time MOSFET-C filters in VLSI. IEEE J. Solid-State Circuits SC-21 (1986) 15–30

    Google Scholar 

  69. Banu, M.; Tsividis, Y.: Fully integrated active RC filters in MOS technology. IEEE J. Solid-State Circuits SC-18 (1986) 644–651

    Google Scholar 

  70. Banu, M.; Tsividis, Y.: An elliptic continuous-time CMOS filter with on chip automatic tuning. IEEE J. Solid-State Circuits SC-20 (1985) 1114–1121

    Google Scholar 

  71. Banu, M.; Tsividis, Y.: Detailed analysis of nonidealities in MOS fully integrated active RC filters based on balanced networks. IEE Proc. G. Electronic Circuits and Systems 131 (1984) 190–196

    Article  Google Scholar 

  72. Banu, M.; Tsividis, Y.: Floating voltage-controlled resistors in CMOS technology. Electronics Letters 18 (1982) 678–679

    Article  Google Scholar 

  73. Pennock, J.L.: CMOS triode transconductor for continuous-time active integrated filters. Electronics Letters 21 (1985) 817–818

    Article  Google Scholar 

  74. Tsividis, Y.; Czarnul, Z.; Fang, S.C.: MOS transconductors and integrators with high linearity. Electronics Letters 22 (1986) 245–246 Errata ibid. 22, 619

    Google Scholar 

  75. Czarnul, Z.; Tsividis, Y.: MOS tunable transconductor. Electronics Letters 22 (1986) 721–722

    Article  Google Scholar 

  76. Czarnul, Z.; Tsividis, Y.: Independent tuning of quality factor and unity-gain frequency in a transconductance-capacitance integrator. Electronics Letters 22 (1986) 1026–1027

    Article  Google Scholar 

  77. Nagaraj, K.: New CMOS floating voltage-controlled resistor. Electronics Letters 22 (1986) 667–668

    Article  Google Scholar 

  78. Czarnul, Z.: Modification of Banu-Tsividis continuous-time integrator structure. IEEE Trans. Circuits and Systems CAS-33 (1986) 714–716

    Article  Google Scholar 

  79. Czarnul, Z.: Novel MOS resistive circuit for synthesis of fully integrated continuous-time filters. IEEE Trans. Circuits and Systems CAS-33 (1986) 718–721

    Article  Google Scholar 

  80. Czarnul, Z.: Performance comparison of integrated continuous-time integrators containing matched MOS transistors. IEE Proc. G. Electronic Circuits and Systems 133 (1986) 203–208

    Article  Google Scholar 

  81. Ismail, M.: New fully-integrated MOSFET-capacitor active filters. IEEE Proc. Int. Symposium on Circuits and Systems, Kyoto, Japan (1985) 1435–1438

    Google Scholar 

  82. Ismail, M.: A new MOSFET-capacitor integrator. IEEE Trans. Circuits and Systems CAS-32 (1985) 1194–1196

    Google Scholar 

  83. Ismail, M.; Rubin, D.: Improved circuits for the realization of MOSFET-capacitor filters. IEEE Proc. Int. Symposium on Circuits and Systems, San Jose, USA (1986) 1186–1189

    Google Scholar 

  84. Smith, S.; Liu, F.; Ismail, M.: Active RC-building blocks for MOSFET-C integrated filters. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 342–346

    Google Scholar 

  85. Khachab, N.I.; Ismail, M.: Novel continuous-time all MOS four-quadrant multipliers. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 762–765

    Google Scholar 

  86. Park, C.-S.; Schaumann, R.: A high-frequency CMOS linear transconductance element. IEEE Trans. Circuits and Systems CAS-33 (1986) 1132–1138

    Google Scholar 

  87. Park, C.S.; Schaumann, R.: Design of an eighth-order fully integrated CMOS 4MHz continuous-time bandpass filter with digital/analog control of frequency and quality factor. IEEE Proc. Int. Symposium on Circuits and Systems, Philadelphia, USA (1987) 754–757

    Google Scholar 

  88. Tan, MA.; Schaumann, R.: Generation of transconductance grounded capacitor filters by signal-flow graph simulation of LC-ladders. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2407–2410

    Google Scholar 

  89. Geiger, R.L.; SAnchez-Sinencio, E.: Active filter design using operational transconductance amplifiers: A tutorial. IEEE Circuits and Devices Mag. 1 (1985) 20–32

    Google Scholar 

  90. Babanezhad, J.N.; Ternes, G.C.: A linear NMOS depletion resistor and its application in an integrated amplifier. IEEE J. Solid-State Circuits SC-19 (1984) 932–938

    Google Scholar 

  91. Han, I.S.; Park, S.B.: Voltage-controlled linear resistor by two MOS transistors and its application to active RC filter integration. Proceedings of IEEE 72 (1984) 1655–1657

    Article  Google Scholar 

  92. Nay, K.; Budak, A.: A voltage-controlled resistance with wide dynamic range and low distortion. IEEE Trans. Circuits and Systems CAS-30 (1983) 770–772

    Google Scholar 

  93. Czarnul, Z.: Design of voltage-controlled linear transconductance elements with a matched pair of FET transistors. IEEE Trans. Circuits and Systems CAS-33 (1986) 1012–1015

    Google Scholar 

  94. Acar, C.; Ghausi, M.S.: Fully integrated active-RC filters using MOS and non-balanced structure. Int. J. of Circuit Theory and Applications 15 (1987) 105–121

    Article  Google Scholar 

  95. Radharkrishna Rao, K.; Venugopal, G.: A novel technique for the on-chip tuning of monolithic filters. Proceedings of IEEE 75 (1987) 257–258

    Article  Google Scholar 

  96. Nedungadi, A.; Viswanathan, T.R.: Design of linear CMOS transconductance elements. IEEE Trans. Circuits and Systems CAS-31 (1984) 891–894

    Article  Google Scholar 

  97. Torrance, R.R.; Viswanathan, T.R.; Hanson, J.V.: CMOS voltage to current transducers. IEEE Trans. Circuits and Systems CAS-32 (1985) 1097–1104

    Article  Google Scholar 

  98. Viswanathan, T.L.: CMOS transconductance element. Proceedings of IEEE 74 (1986) 222–224

    Article  Google Scholar 

  99. Kim,C.W.; Park, S.B.: New four-quadrant CMOS analogue multiplier. Electronics Letters 23 (1987) 1268–1270

    Article  Google Scholar 

  100. Seevinck, E.; Wassenaar, R.F.: A versatile CMOS linear transconductor/square-law function circuit. IEEE J. Solid-State Circuits SC-22 (1987) 366–377

    Google Scholar 

  101. Wong, S.L.; Kalyanasundaram, N.; Salama, C.A.T.: Wide dynamic range four-quadrant CMOS analog multiplier using linearized transconductance stages. IEEE J. Solid-State Circuits SC-21 (1986) 1120–1122

    Google Scholar 

  102. Bult, K.; Wallinga, H.: A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE J. Solid-State Circuits SC-22 (1987) 357–365

    Google Scholar 

  103. Penney, W.M.; Lau, L. (eds.): MOS Integrated Circuits. New York: Van Nostraud (1972)

    Google Scholar 

  104. Tsividis, Y.: Operation and Modeling of the MOS Transistor. New York: McGraw-Hill (1987)

    Google Scholar 

  105. Voorman, J.O.: Analog integrated filters or continuous-time filters for LSI and VLSI. Revue Phys. Appl. 22 (1987) 3–14

    Google Scholar 

  106. Tsividis, Y.: Signal processors with transfer function coefficients determined by timing. IEEE Trans. Circuits and Systems CAS-29 (1982) 807–817

    Google Scholar 

  107. Vallancourt, D.; Tsividis, Y.: Timing-controlled switched analog filters with full digital programmability. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-87, Philadelphia, USA (1987) 329–333

    Google Scholar 

  108. Vallancourt, D.; Tsividis, Y.P.: A fully programmable sampled-data analog CMOS filter with transfer-function coefficients determined by timing. IEEE J. Solid-State Circuits SC-22 (1987) 1022–1030

    Google Scholar 

  109. Cichocki, A.; Unbehauen, R.: Monolithic MOS switched-capacitor microsystems for nonlinear analog signal processing. IEEE Trans. Measurement and Instrumentation IM-37 (1988) 18–24

    Google Scholar 

  110. Cichocki, A.; Unbehauen, R.: Switched-capacitor function generators. Int. J. of Electronics 64 (1988) 359–375

    Article  Google Scholar 

  111. Cichocki, A.; Unbehauen, R.: Logarithmic and exponential switched-capacitor converters and some of their applications. IEE Proc. Electronic Circuits and Systems 135, Pt. G. (1988) 58–64

    Google Scholar 

  112. Cichocki, A.; Unbehauen, R.: Application of SC MOS delta and delta-sigma modulators to nonlinear signal processing. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2233–2236

    Google Scholar 

  113. Nakayama, K.; Kuraishi, Y.: Present and future applications of switched-capacitor circuits. IEEE Circuits and Device Magazine (1987) 10–21

    Google Scholar 

  114. Smith, M.J.S.: On the circuit analysis of the Schmitt Trigger. IEEE J. Solid-State Circuits SC-23 (1988) 292–294

    Google Scholar 

  115. Filanovsky, I.M.; Finvers, I.G.: A simple nonsaturated CMOS multivibrator. IEEE J Solid-State Circuits SC-23 (1988) 289–292

    Google Scholar 

  116. Garverick, S.L.; Sodini, C.G.: A wide-band NMOS balanced modulator/amplifier which uses 1-Am transistors for linearity. IEEE J. Solid-State Circuits SC-23 (1988) 195–198

    Google Scholar 

  117. Song, B.-S.: Synchronous data recovery in RF communication channels. IEEE J. Solid-State Circuits SC-22 (1987) 1169–1176

    Google Scholar 

  118. Lewis, S.H.; Gray, P.R.: A pipelined 5-Msample/s 9-bit analog-to-digital converter. IEEE J Solid-State Circuits SC-22 (1987) 954–961

    Google Scholar 

  119. Roessler, B.; Wolter, E.: CMOS analog front end of a transceiver with digital echo cancellation for ISDN. IEEE J. Solid-State Circuits SC-23 (1988) 311–317

    Google Scholar 

  120. McCarroll, R.J.; Sodini, C.G.; Lee, H.-S.: A high-speed CMOS comparator for use in an adc. IEEE J. Solid-State Circuits SC-23 (1988) 159–165

    Google Scholar 

  121. Ryan, P.J.; Haigh, D.G.: Novel fully differential MOS transconductor for integrated continuous-time filters. Electronics Letters 23 (1987) 742–743

    Article  Google Scholar 

  122. Ismail, M.: Four-transistor continuous-time MOS transconductor. Electronics Letters 23 (1987) 1099–1100

    Article  Google Scholar 

  123. Ismail, M.; Smith S.V.; Beale, R.G.: A new MOSFET-C universal filter structure for VLSI. IEEE J. Solid-State Circuits SC-23 (1988) 183–194

    Google Scholar 

  124. Czarnul, Z.; Tsividis, Y.P.: Implementation of MOSFET-C filters based on active RC prototypes. Electronics Letters 24 (1988) 184–185

    Article  Google Scholar 

  125. Takagi, S.; Fujii, N.; Yanagisawa, T.: A canonical continuous-time MOSFET-capacitor filter with high linearity. IEEE Proc. Int. Symposium on Circuits and Systems ISCAS-88, Helsinki, Finland (1988) 2177–2180

    Google Scholar 

  126. Krummenacher, F.; Joehl, N.: A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits SC-23 (1988) 750–758

    Article  Google Scholar 

  127. Bult, K.; Wallinga, H.: A CMOS analog continuous-time delay line with adaptive delay-time control. IEEE J Solid-State Circuits SC-23 (1988) 759–766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unbehauen, R., Cichocki, A. (1989). Design of Adaptive and Nonlinear Analog CMOS Circuits: Building Block Approach. In: MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83677-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83677-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83679-4

  • Online ISBN: 978-3-642-83677-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics