Skip to main content

Homologous Pairing Promoted by Ustilago Rec 1 Protein

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 2))

Abstract

Progress in understanding the basis of recombination has lagged behind the related and overlapping areas of replication and repair for a number of reasons. For instance, the most favorable organisms for genetic analysis of recombination have not coincided with those most suitable for molecular studies. E. coli and its phages have been the prime source of molecular information, but some fairly obscure fungi have been instrumental in providing crucial genetic information about recombination. Furthermore, the phages of E. coli that were used most extensively for analysis of recombination were so different in their life cycles that it was not at all clear, at least in the beginning, that conclusions from any one of them could be generalized. Finally, recombination has not lent itself easily to dissection by biochemists because for a long time nobody could think of an adequate way to study the process. The problem was, if essentially identical chromosomes were crossed, what biochemical property could be exploited to measure the progress of the reaction?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bianchi M, Das Gupta C, Radding CM (1983) Synapsis and the formation of paranemic joints by E. coli rec A protein. Cell 34:931–939

    Article  PubMed  CAS  Google Scholar 

  • Brahms S, Vergue J, Brahms JG, Di Capua E, Bucher P, Koller T (1982) Natural DNA sequences can form left-handed helices in low salt solution under conditions of to-pological constraint. J Mol Biol 162:473–493

    Article  PubMed  CAS  Google Scholar 

  • Bullock P, Miller J, Botchan M (1986) Effects of poly [d(pGpT)•d(pApC)] and poly-[d(pCpG) •d(pCpG)] repeats on homologous recombination in somatic cells. Mol Cell Biol 6:3948–3953

    PubMed  CAS  Google Scholar 

  • Champoux JJ (1977) Renaturation of complementary single-stranded DNA circles: complete rewinding facilitated by the DNA untwisting enzyme. Proc Natl Acad Sci USA 74:5329–5332

    Google Scholar 

  • Cohen JB, Effron K, Rechavi G, Ben-Neriah Y, Zakut R, Gival D (1982) simple DNA sequences in homologous flanking regions near immunoglobulin VH genes: a role in interaction? Nucl Acids Res 10:3352–3370

    Article  Google Scholar 

  • Cox MM, Lehman IR (1987) Enzymes of general recombination. Biochemistry 56:225–262

    Article  Google Scholar 

  • Di Capua E, Stasiak A, Koller T, Brahms S, Thomae R, Pohl FM (1983) Torsional stress induces left-handed helical stretches in DNA of natural base sequence: circular dichroism and antibody binding. EMBO J 2:1531–1535

    PubMed  Google Scholar 

  • Flanagan JG, Lefranc MP, Rabbitts TH (1984) Mechanism of divergence and convergence of the human immunoglobulin α1 and α2 constant region gene sequences. Cell 36:681–688

    Article  PubMed  CAS  Google Scholar 

  • Gonda DK, Shibata T, Radding CM (1985) Kinetics of homologous pairing promoted by rec A protein: effect of ends and internal sites in DNA. Biochemistry 24:413–420

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA priming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA 79:6465–6469

    Article  PubMed  CAS  Google Scholar 

  • Haniford DB, Pulleyblank DE ( 1986) The in vivo occurrence of Z-DNA. J Biomol Struct Dyn 1:593–609

    Google Scholar 

  • Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res Camb 5:282–304

    Google Scholar 

  • Holliday R (1967) Altered recombination frequencies in radiation sensitive strains of Ustilago. Mutat Res 4:275–288

    Article  PubMed  CAS  Google Scholar 

  • Holloman WK, Wiegand R, Hoessli C, Radding CM (1975) Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc Natl Acad Sci USA 72:2394–2398

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick MW, Klysik J, Singleton CK et al. (1984) Intervening sequences in human fetal globin genes adopt left-handed Z helices. J Biol Chem 259:7268–7274

    PubMed  CAS  Google Scholar 

  • Klysik J, Stirdivant SM, Wells RD (1982) Left-handed DNA: cloning, characterization and instability of inserts containing different lengths of (dC-dG) in Escherichia coli. J Biol Chem 257:10152–10158

    PubMed  CAS  Google Scholar 

  • Kmiec E, Holloman WK (1982) Homologous pairing of DNA molecules promoted by a protein from Ustilago. Cell 29:367–374

    Article  PubMed  CAS  Google Scholar 

  • Kmiec E, Holloman WK (1983) Heteroduplex formation and polarity during strand transfer promoted by Ustilago rec 1 protein. Cell 33:857–864

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Holloman WK (1984) Synapsis promoted by Ustilago rec 1 protein. Cell 36:593–598

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Angelides KJ, Holloman WK (1985) Left-handed DNA and the synaptic pairing reaction promoted by Ustilago rec 1 protein. Cell 40:139–145

    Article  PubMed  CAS  Google Scholar 

  • Kmiec EB, Holloman WK (1986) Homologous pairing of DNA molecules by Ustilago rec 1 protein is promoted by sequences of Z-DNA. Cell 44:545–554

    Article  PubMed  CAS  Google Scholar 

  • Lafer EM, Moller A, Nordheim A, Stolar BD, Rich A (1981) Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci USA 78:3546–3550

    Article  PubMed  CAS  Google Scholar 

  • Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci USA 72:359–361

    Article  Google Scholar 

  • Nordheim A, Rich A (1983) The sequence (dC-dA)n (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci USA 80:1821–1825

    Article  PubMed  CAS  Google Scholar 

  • Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982) Negatively super-coiled plasma contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31:309–318

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM (1969) Ein Modell der DNS-Struktur. Naturwissenschaften 54:616

    Article  Google Scholar 

  • Riddles PW, Lehman IR (1985) The formation of paranemic and plectonemic joints between DNA molecules by the rec A protein and single stranded DNA-binding proteins of Escherichia coli. J Biol Chem 260:165–169

    PubMed  CAS  Google Scholar 

  • Shen S, Slightom JL, Smithies O (1981) A history of the human fetal globin gene duplication. Cell 26:191–203

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, DasGupta C, Cunningham RP, Radding CM (1979) Purified E. coli rec A protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci USA 76:1638–1642

    Article  PubMed  CAS  Google Scholar 

  • Skowronski J, Plucienniczak A, Bednarek A, Jaworski J (1984) Bovine 1.709 Satellite: recombination hotspots and dispersed repeated sequences. J Mol Biol 177:399–416

    Article  PubMed  CAS  Google Scholar 

  • Stettler UH, Weber H, Koller T, Weissman C (1979) Preparation and characterization of form V DNA, the duplex DNA resulting from association of complementary, circular single-stranded DNA. J Mol Biol 131:21–20

    Article  PubMed  CAS  Google Scholar 

  • Stringer JR (1985) Recombination between poly [d(GT)•d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol 5:1247–1259

    PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RB, Stahl FW (1983) The double strand break model for recombination. Cell 33:25–35

    Article  PubMed  CAS  Google Scholar 

  • Treco D, Arnheim N (1986) The evolutionary conserved repetitive sequence d(TG′ AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol Cell Biol 6:3934–3947

    PubMed  CAS  Google Scholar 

  • Weinstock GM, McEntee K, Lehman IR (1979) ATP-dependent renaturation of DNA catalyzed by the recA protein of E. coli. Proc Natl Acad Sci USA 76:126–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holloman, W.K. (1988). Homologous Pairing Promoted by Ustilago Rec 1 Protein. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83384-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83384-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83386-1

  • Online ISBN: 978-3-642-83384-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics