Skip to main content

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 42))

Abstract

Blue-green alga (cyanobacteria) , red alga and cryptophyceae contain phycobiliproteins as major light-harvesting pigments which gather light in the wavelength region of low Chl absorption. The chromophores in these pigments are open chain tetrapyrroles which are bound covalently to apoproteins [1]. It has been shown that the energy absorbed by phycobiliproteins feeds the small pool of Chl in these algae [2]. In cyanobacteria and red alga the phycobiliproteins form large supramolecular antenna complexes, so-called phycobilisomes (PBS) [3, 4] which are located at the outer surface of the thylakoid membrane. PBS are made up of two or three different types of phycobiliproteins which occur predominantly in hexameric aggregation. The first picosecond measurements of phycobiliprotein containing algae and isolated PBS were carried out by Porter et al. [5, 6]. Phycobiliproteins and PBS are interesting objects for time-resolved studies for several reasons. Unlike the Chl protein complexes of higher plants, different phycobiliproteins have their absorption and emission spectra fairly well separated, which more easily allows the detailed sequence of energy-transfer steps to be explored. Furthermore, the single-step transfer times seem to be significantly longer than those of Chl complexes, which puts these processes in a time-range accessible to picosecond techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scheer, H., (1982) in Molecular Biology Biochemistry and Biophysics 35, 7–45, Springer Verlag, Berlin

    Google Scholar 

  2. Wang, R.T., Stevens, C.L.R., and Myers, J., (1977) Photochem. Photobiol. 25 103–108.

    Article  Google Scholar 

  3. Wehrmeyer, W., (1983) in Photosynthetic Prokaryotes, pp. 1–22. Elsevier; Amsterdam, New York

    Google Scholar 

  4. Glazer, A.N., (1984) Biochim. Biophys. Acta 768, 29–51.

    Google Scholar 

  5. Porter, G., Tredwell, C.J., Searle, G.F.W., and Barber, J., (1978) Biochim. Biophys. Acta 501, 232–245.

    Article  Google Scholar 

  6. Searle, G.F.W., Barber, J., Porter, G., and Tredwell, C.J., (1978) Biochim. Biophys. Acta 501, 246–256.

    Article  Google Scholar 

  7. Koller, K.P., Wehrmeyer, W., and Schneider, H., (1977) Arch. Microbiol. 112 61–67.

    Article  Google Scholar 

  8. Glazer, A.N., (9182) Ann. Rev. Microbiol. 36 173–198.

    Article  Google Scholar 

  9. Gantt, E. and Lipschultz, C.A., (1973) Biochim. Biophys. Acta 292, 858–861.

    Article  Google Scholar 

  10. Glazer, A.N., Lundell, D.J., Yamanaka, G., and Williams, R.C., (1983) Ann. Microbiol. 8134 159–180.

    Google Scholar 

  11. Gillbro, T., Sandström, A., Sundström, V., and Holzwarth, A.R., (1983) FEBS Letters 162, 64–68.

    Article  Google Scholar 

  12. Suter, G.W., Mazzola, P., Wendler, J., and Holzwarth, A.R., (1984) Biochim. Biophys. Acta 766, 269–276.

    Article  Google Scholar 

  13. Gillbro, T., Sandström, A., Sundström, V., Wendler, J., and Holzwarth, A.R., (1985) Biochim. Biophys. Acta 808, 52–65.

    Article  Google Scholar 

  14. Wendler, J., Holzwarth, A.R., and Wehrmeyer, W., (1984) Biochim. Biophys. Acta 765, 58–67.

    Article  Google Scholar 

  15. Mimuro, M., Yamazaki, T., Yamazaki, I., and Fujita, Y., (1985) Photochem. Photobiol. in print.

    Google Scholar 

  16. Montroll, E.W., (1969) J. Math. Phys. 10 753–765.

    Article  ADS  Google Scholar 

  17. Glazer, A.N., Yeh, S.W., Webb, S.P., and Clark, J.H., (1985) Science 221, 419–423.

    Article  ADS  Google Scholar 

  18. Pearlstein, R.M., (1982) Photochem. Photobiol. 35 835–844.

    Article  Google Scholar 

  19. Yamazaki, I., Mimuro, M., Murao, T., Yamazaki, T., Yoshihara, K., and Fujita, Y., (1984) Photochem. Photobiol. 39 233–240.

    Article  Google Scholar 

  20. Holzwarth, A.R., Wendler, J., and Wehrmeyer, W., (1982) Photochem. Photobiol. 36 479–487.

    Article  Google Scholar 

  21. Förster, T., (1949) Z. Naturforsch. 4A, 321–327.

    ADS  Google Scholar 

  22. Blumen, A., and Zumofen, G., (1982) J. Chem. Phys. 77 5127–5140.

    Article  MathSciNet  ADS  Google Scholar 

  23. Zumofen, G. and Blumen, A., (1983) Chem. Phys. Lett. 98 393–397.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzwarth, A.R. (1985). Energy-Transfer Kinetics in Phycobilisomes. In: Michel-Beyerle, M.E. (eds) Antennas and Reaction Centers of Photosynthetic Bacteria. Springer Series in Chemical Physics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82688-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82688-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82690-0

  • Online ISBN: 978-3-642-82688-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics