Skip to main content

Monte Carlo Studies of Argon Clusters Confined in Zeolites

  • Conference paper
Frontiers in Materials Modelling and Design
  • 350 Accesses

Abstract

Properties of confined clusters of argon in zeolites have been investigated using Monte Carlo simulations. Argon clusters of sizes 6, 7 and 13 confined in zeolite NaCaA have properties that are significantly different from those of the free clusters. The melting of Ar13 cluster in zeolite L has also been studied. Results indicate inverse surface melting of the cluster in which the atoms at the core of the cluster acquire significant mobility even before the outer atoms. This is in contrast to free clusters of size greater than 40 which exhibit surface melting. It is shown that the extent of annealing has a significant influence on the melting behaviour of confined clusters. Clusters that have been sufficiently annealed do not exhibit a well-defined melting transition, akin to some non-magic number free clusters. The model of Bixon and Jortner is able to explain the observed behaviour in terms of the underlying energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry, S.R. and Cheng, H-P. Physics and Chemistry of Finite Systems: From Clusters to Crystals, Vol. I, 277 Kluwer Academic Pub. (1992).

    Google Scholar 

  2. Beck, T.L. and Marchioro II, T.L. Phys. Rev. A 42, 5019 (1990).

    Article  ADS  Google Scholar 

  3. Hoare, M.R. and Pal, P. Nature, 230, 5 (1970).

    ADS  Google Scholar 

  4. McGinty, D.J. J. Chem. Phys., 58, 4733 (1973).

    Article  ADS  Google Scholar 

  5. Briant, C.L. and Burton, J.J. J. Chem. Phys., 63, 2045 (1975).

    Article  ADS  Google Scholar 

  6. Etters, R.D. and Kaelberer, J. Chem. Phys., 66, 5112 (1977).

    Article  ADS  Google Scholar 

  7. Etters, R.D. and Kaelberer, Phys. Rev. A, 11, 1068 (1975).

    Article  ADS  Google Scholar 

  8. Honeycutt, J.D. and Andersen, H.C. J. Phys. Chem., 91, 4950 (1987).

    Article  Google Scholar 

  9. Adams, J.E. and Stratt, R.M. J. Chem. Phys., 93, 1332 (1990).

    Article  ADS  Google Scholar 

  10. Quirke, N. and Sheng, P. Chem. Phys. Lett., 110, 63 (1984).

    Article  ADS  Google Scholar 

  11. Frantz, D.D. J. Chem. Phys., 1995, 102, 3747 (1995).

    Google Scholar 

  12. Nauchitel, V.V. and Pertsin, A.J. Mol. Phys., 40, 1341 (1980).

    Article  ADS  Google Scholar 

  13. Pluth, J.J. and Smith, J.V. J. Am. Chem. Soc., 102, 4704 (1980).

    Article  Google Scholar 

  14. Wright, P.A.; Thomas, J.M.; Cheetham, A.K. and Nowak, A.K. Nature, 318, 611 (1985).

    Article  ADS  Google Scholar 

  15. Davis, H.L.; Jellinek, J. and Berry, S.R. J. Chem. Phys., 86, 6456 (1987).

    Article  ADS  Google Scholar 

  16. Kiselev, A.V. and Du, P.Q. J. Chem. Soc. Faraday Trans. II, 77, 1 (1981).

    Article  Google Scholar 

  17. Englesfield, E.J., in Computer Simulation of Solids (eds. C.R.A. Catlow & W.C. Mackrodt Springer-Verlag, Berlin, 1982 ).

    Google Scholar 

  18. Henson, N.J.; Cheetham, A.K.; Peterson, B.K.; Pickett, S.D. and Thomas, J.M. J. Computer-Aided Mat. Design, 1, 41 (1993).

    Google Scholar 

  19. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, ( Clarendon Press, Oxford, 1987 ).

    MATH  Google Scholar 

  20. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. J. Chem. Phys., 1087 (1953).

    Google Scholar 

  21. Yashonath, S. and Santikary, P. J. Phys. Chem., 97, 13778.

    Google Scholar 

  22. Kunz, R.E. and Berry, R.S. Phys. Rev. Lett., 71, 3987 (1993).

    Article  ADS  Google Scholar 

  23. Cheng, H-P. and Berry, R.S. Phys. Rev. A., 45, 7969 (1992).

    Article  ADS  Google Scholar 

  24. Chitra, R. and Yashonath, S. J. Phys. Chem., in press.

    Google Scholar 

  25. Bixon, M. and Jortner, J. J. Chem. Phys., 1631 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chitra, R., Yashonath, S. (1998). Monte Carlo Studies of Argon Clusters Confined in Zeolites. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics