Skip to main content

Custom Smart Image Sensors for Optical Metrology and Machine Vision

  • Conference paper
Laser in Forschung und Technik / Laser in Research and Engineering
  • 32 Accesses

Abstract

Thanks to the advances in semiconductor technology it is possible today to fabricate solid state image sensors with 5k×5k and more pixels, while reducing the geometry of the pixels at the same time to 5×5μm2 and less. This enables one to integrate electronic circuitry with each pixel, without compromising the fill factor substantially. Such pixels with added functionality are the basis of custom photo-ASICs, application-specific integrated circuits containing photosensitive elements, and so-called smart image sensors: Single-chip cameras with on-chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable sensitivity of the pixels leading to image sensors with a dynamic range exceeding 100 dB. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Tompsett, G.F. Amelio, W.J. Bertram, R.R. Buckley, W.J. McNamara, J.C. Mikkelsen jr. and D.A. Sealer, ”Charge-Coupled Imaging Devices: Experimental Results”, IEEE Trans. Electr. Dev., Vol. 18, 992–996 (1971).

    Article  Google Scholar 

  2. P. Suni, “CCD Technology at Orbit Semiconductor Inc.”, International Conference on.Scientific Optical Imaging, Georgetown, Grand Cayman Islands, Dec. 2–6, 1992.

    Google Scholar 

  3. C. Koch, “Seeing Chips: Analog VLSI Circuits for Computer Vision”, Neural Computation, Vol. 1, 184–200 (1989).

    Article  Google Scholar 

  4. “Technology Roadmap for Products and Systems”, BPA Technology Management Ltd., BPA House, 250–256 High Street, Dorking, UK — Surrey RH4-1QT. Tel. +44-1306-875-500, FAX +44-1306-888-179.

    Google Scholar 

  5. A.J.P. Theuwissen, personal communications, Philips Imaging Technology, Nederlandse Philips Bedrijven B.V., Prof. Holstlaan 4, WAG14, NL — 5656 AA Eindhoven, The Netherlands. Tel. +31-4074-2734, FAX +31-4074-3390.

    Google Scholar 

  6. Loral Fairchild Imaging Sensors, 1801 McCarthy Blvd., Milpitas, CA 95035, USA; Tel. (408) 433-2500, FAX (408) 433-2508.

    Google Scholar 

  7. B. Bosiers et.al., “A True Progressive Scan 640x480 FT-CCD For Multimedia Applications”, Proc. IEDM’94, Dec. 11–15, 1994.

    Google Scholar 

  8. E. Hecht, “Optics”, 2nd edition, Addison-Wesley (1987).

    Google Scholar 

  9. E.R. Fossum: “Active pixel sensors (APS) — Are CCDs dinosaurs?”, Proc. SPIE, Vol. 1900, 2–14 (1992).

    Article  ADS  Google Scholar 

  10. K. Knop and P. Scitz, “Image Sensors”, in Sensors Update, (Eds. H. Baltes, W. Göpel and J. Hesse), VCH-Verlag, Weinheim, in print (1995).

    Google Scholar 

  11. F.M. Klaassen and J. Prins, “Thermal noise of MOS transistors”, Philips Research Reports, Vol. 22, 505–514 (1967).

    Google Scholar 

  12. R.H. Nixon, S.E. Kemeny, C.O. Staller and E.R. Fossum, “128×128 CMOS Photodiode-Type Active Pixel Sensor with On-Chip Timing, Control and Signal Chain Electronics”, Proc. SPIE, Vol. 2415, 117–123 (1995).

    Article  ADS  Google Scholar 

  13. J. Janesick, T. Elliott, A. Dingizian, R. Bredthauer, C. Chandler, J. Westphal and J. Gunn, “New advancements in charge-coupled device technology — sub-electron noise and 4096×4096 pixel CCDs”, Proc. SPIE, Vol. 1242, 223–237 (1990).

    Article  ADS  Google Scholar 

  14. J. Kramer, “Photo-ASICs: Integrated Optical Metrology Systems with Industrial CMOS technology”, Ph.D. thesis No. 10186, Federal Institute of Technology (ETH), Zurich (1993).

    Google Scholar 

  15. Y. Matsunaga, H. Yamashita and S. Ohsawa, “A Highly Sensitive On-Chip Charge Detector for CCD Area Image Sensor”, IEEE J. Solid State Circ., Vol. 26, 652–656 (1991).

    Article  Google Scholar 

  16. W. Budde, “Multidecade linearity measurements on Si photodiodes”, Applied Optics, Vol. 18, 1555–1558 (1979).

    Article  ADS  Google Scholar 

  17. J. Kramer, P. Scitz and H. Baltes, IEEE Quantum Electronics, “Planar Distance and Velocity Sensor”, IEEE J. Quantum Electr., Vol. 30, 2726–2730 (1994).

    Article  ADS  Google Scholar 

  18. P. Scitz, T. Spirig, O. Vietze and K. Engelhardt, “Smart sensing using custom photo-ASICs and CCD technology”, Optical Engineering, to appear in August 1995.

    Google Scholar 

  19. P. Scitz, D. Leipold, J. Kramer and J.M. Raynor, “Smart optical and image sensors fabricated with industrial CMOS/CCD semiconductor processes”, Proc. SPIE, Vol. 1900, 21–30 (1993).

    Article  ADS  Google Scholar 

  20. Q. Zhu, H. Stiebig, P. Rieve, H. Fischer and M. Böhm, “A Novel a-Si(C):H Color Sensor Array”, Proc. MRS Spring Meeting, Symposium A — Amorphous Silicon Technology, San Francisco, April 4–8, 1994.

    Google Scholar 

  21. B. Pain, S.K. Mendis, R.C. Schober, R.H. Nixon and E.R. Fossum, “Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors”, Proc. SPIE, Vol. 1946, 365–374 (1993).

    Article  ADS  Google Scholar 

  22. C.A. Mead, “Analog VLSI and Neural Systems”, Addison-Wesley, Reading (1989).

    Book  MATH  Google Scholar 

  23. J.D.E. Beynon and D.R. Lamg, “Charge-coupled devices and their applications”, McGraw Hill, London (1980).

    Google Scholar 

  24. S. Chen and R. Ginosar, “Adaptive Sensitivity CCD Image Sensor”, Proc. SPIE, Vol. 2415, 303–310 (1995).

    Article  ADS  Google Scholar 

  25. E.R. Fossum and B. Pain, “Infrared Readout Electronics for Space Science Sensors: State of the Art and Future Directions”, Proc. SPIE, Vol. 2020, 262–283 (1993).

    Article  ADS  Google Scholar 

  26. T. Spirig, P. Scitz, O. Vietze and F. Heitger, “Lock-in CCD”, IEEE J. Quantum Electronics, in print (1995).

    Google Scholar 

  27. M.L. Meade, “Lock-in amplifiers: principles and applications”, Peregrinus, London (1983).

    Google Scholar 

  28. B.C. Doody, S.G. Chamberlain and W.D. Washurak, “A high photosensitivity wid dynamic range silicon linear image sensor array”, Advance Printing of Paper Summaries, Electronic Imaging’ 87, Institute for Graphic Communication Inc. (pub.), 254–259 (1987).

    Google Scholar 

  29. M. Mahowald and C.A. Mead, “The Silicon Retina”, Scientific American, May’ 91, 40–46 (1991).

    Google Scholar 

  30. E-S. Eid, A.G. Dickinson, D.A. Inglis, B.D. Ackland and E.R. Fossum, “A 256×256 CMOS Active Pixel Sensor”, Proc. SPIE, Vol. 2415, 265–275 (1995).

    Article  ADS  Google Scholar 

  31. C. Claeys, I. Debusschere, N. Ricquier, P. Scitz, M. Stalder, J.M. Raynor, G.K. Lang, G. Cilia, C. Cavanna, U. Müssigmann and A. Abele, ”An active machine vision system for surface quality inspection”, Proc. SPIE, Vol. 2183, 205–213 (1994).

    Article  ADS  Google Scholar 

  32. C. Séquin and M.F. Tompsett, “Charge Transfer Devices”, Academic Press, New York (1975).

    Google Scholar 

  33. P. Scitz, T. Spirig, O. Vietze and P. Metzler, “Lock-in CCD and the convolver CCD: Applications of exposure-concurrent photocharge transfer in optical metrology and machine vision”, Proc. SPIE, Vol. 2415, 276–284 (1995).

    Article  ADS  Google Scholar 

  34. D.J. Sauer, F.L. Hsueh, F.V. Shallcross, G.M. Meray, P.A. Levine, G.W. Hughes and J. Pellegrino, “High Fill-Factor CCD Imager with Highr Frame-Rate Readout”, Proc. SPIE, Vol. 1291, 174–184 (1990).

    Article  ADS  Google Scholar 

  35. E. R. Fossum, “Architectures for focal plane image processing”, Optical Engineering, Vol. 28, 865–871 (1989).

    Article  ADS  Google Scholar 

  36. P. Aubert, H.J. Oguey and R. Vuillemier, “Monolithic optical position encoder with on-chip photodiodes”, IEEE J. Solid State Circ., Vol. 23, 465–473 (1988).

    Article  Google Scholar 

  37. D. Renshaw, P.B. Denyer, G. Wang and M. Lu, “ASIC Vision”, Proc. of the IEEE 1990 Custom Integrated Circuits Confi, 7.3.1–7.3.4 (1990).

    Google Scholar 

  38. VLSI Vision Limited, Aviation House, 31 Pinkhill, UK — Edinburg EH12 7BF. Tel. (031) 539-7111, FAX (031) 539-7141.

    Google Scholar 

  39. Integrated Vision Products AB, Teknikringen 1, S-58330 Linköping, Tel. +46-13-21-4160, FAX+46-13-21-3724.

    Google Scholar 

  40. J. Kramer, P. Scitz and H. Baltes, “Inexpensive range camera operating at video speed”, Applied Optics, Vol. 32, 2323–2330 (1993).

    Article  ADS  Google Scholar 

  41. A. Kawasaki, M. Goto, H. Yashiro and H. Ozaki, “An array-type PSD (position-sensitive detector) for light pattern measurement”, Sensors and Actuators A, Vol. A21–23, 529–533 (1990).

    Google Scholar 

  42. A. Gruss, L.R. Carley and T. Kanade, “Integrated Sensor and Range-Finding Analog Signal Processor”, IEEE J. Solid State Circ, Vol. 26, 184–192 (1991).

    Article  ADS  Google Scholar 

  43. J.M. Hakkarainen, J.J. Little, H. Lee and J.L. Wyatt, “Interaction of algorithm and implementation for analog VLSI stereo vision”, Proc. SPIE, Vol. 1473, 173–184 (1991).

    Article  ADS  Google Scholar 

  44. R. Dändliker, K. Hug, J. Politch and E. Zimmermann, “High Accuracy Distance Measurements with Multiple Wavelength Interferometry”, Optical Engineering, to appear in August 1995.

    Google Scholar 

  45. J.A. Izatt, M.R. Hee, D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, C.A. Puliaflto and J.G. Fujimoto, “Micron-Resolution Biomedical Imaging with Optical Coherence Tomography”, Optics & Photonics News, October 1993, 14–19 (1993).

    Google Scholar 

  46. P.B. Denyer, D. Renshaw and S.G. Smith, “Intelligent CMOS Imaging”, Proc. SPIE, Vol. 2415, 285–291 (1995).

    Article  ADS  Google Scholar 

  47. C. Koch, “Implementing early vision algorithms in analog hardware — An overview”, Proc. SPIE, Vol. 1473, 2–15 (1991).

    Article  ADS  Google Scholar 

  48. D.H. Hubel, “Eye, Brain and Vision”, Scientific American Library, New York (1988).

    Google Scholar 

  49. J. Tanner and J. Luo, “A single chip imager and feature extractor“, Proc. SPIE, Vol. 1473, 76–87 (1991).

    Article  ADS  Google Scholar 

  50. J.E. Carson (Ed.), “Materials, Devices, Techniques and Applications for Z-Plane Focal Plane Array Technology”, Proc. SPIE, Vol. 1097 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seitz, P. (1996). Custom Smart Image Sensors for Optical Metrology and Machine Vision. In: Waidelich, W., Hügel, H., Opower, H., Tiziani, H., Wallenstein, R., Zinth, W. (eds) Laser in Forschung und Technik / Laser in Research and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80263-8_111

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80263-8_111

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61316-9

  • Online ISBN: 978-3-642-80263-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics