Skip to main content

Lectins: Models of Natural and Induced Molecules in Invertebrates

  • Chapter
Invertebrate Immune Responses

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 24))

Abstract

The defence molecules of the humoural “immune repertoire” reflect the internal organization of an organism and its interactions with non-self to ensure its integrity and proliferation in the environment. Such interactions may vary from interdependence or mutualism to competition, parasitism and pathogenicity. Thus, a comparative study of molecules involved in defence reactions must consider both the pathogen and the host in question. Moreover, it is not possible to understand the function of defence molecules, whether they are acting in recognition, modulation or signalling, without regard to their interplay with other components of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton RT, Bennett JC, Evans EE, Schrohenloher RE (1969) Physical and chemical characterization of an oyster hemagglutinin. J Biol Chem 244: 4128–4135.

    PubMed  CAS  Google Scholar 

  • Amirante GA (1986) Agglutinins and lectins of Crustacea. Their composition, synthesis and functions. In: Gupta AP(ed), Hemocytic and humoral immunity in anthropods. Wiley, New York, pp 359–380.

    Google Scholar 

  • Arimoto R, Tripp MR (1977) Characterization of a bacterial agglutinin in the hemolymph of the hard clam, Mercenaria mercenaria. J Invertebr Pathol 30: 406–413

    CAS  Google Scholar 

  • Armstrong PB, Armstrong MT, Quigley JP (1993) Involvement of alpha-2-macroglobulin and C-reactive protein in a complement-like hemolytic system in the arthropod, Limulus polyphemus. Mol Immunol 30: 929–934

    PubMed  CAS  Google Scholar 

  • Arizza V, Parrinello N, Cammarata M, Picciurro A (1993) Immunocytochemical localization of cellular lectins in Phallusia mamillata hemocytes. Anim Biol 2: 83–90

    Google Scholar 

  • Arizza V, Parrinello N, Schimmenti S (1991) In vitro release of lectins by Phallusia mammillata hemocytes. Dev Comp Immunol 15: 219–226

    PubMed  CAS  Google Scholar 

  • Atmar RL, Metcalf TG, Neill FH, Estes MK (1993) Detection of enteric viruses in oysters by using the polymerase chain reaction. Appl Environ Microbiol 59: 631–635

    PubMed  CAS  Google Scholar 

  • Baltz M, De Beer F, Feinstein A, Munn E, Milstein C, Fletcher T, March J, Taylor J, Bruton C, Clamp J, Davies A, Pepys M (1982) Phylogenetic aspect B of C-reactive protein and related proteins. Ann NY Acad Sci 389: 49–75

    PubMed  CAS  Google Scholar 

  • Bang FB, Lemma A (1962) Bacterial infection and reaction to injury in some echinoderms. J Insect Pathol 4: 401–414

    Google Scholar 

  • Bayne CJ (1983) Molluscan immunobiology. In: Saleuddin ASM, Wilbur KM (eds) Physiology, Part 2. Academic Press, San Diego, pp 407–486

    Google Scholar 

  • Beck G, Habicht GS (1991) Purification and biochemical characterization of an invertebrate interleukin-1. Mol Immunol 28: 577–58

    PubMed  CAS  Google Scholar 

  • Beck G, Obrien RF, Habicht GS (1990) Characterization of interleukin-1 from Invertebrates. In: Marchalonis JJ, Reinisch CL (eds) Defense molecules. Wiley-Liss, New York, pp 125–132

    Google Scholar 

  • Beck G, Obrien RF, Habicht GS, Stillman DL, Cooper EL, Raftos DA (1993) Invertebrate cytokines. 3. Invertebrate interleukin-1-like molecules stimulate phagocytosis by tunicate and echinoderm cells. Cell Immunol 146: 284–299

    PubMed  Google Scholar 

  • Bertheussen K (1982a) Receptors for complement on echinoid phagocytes I. The opsonic effect of vertebrate sera on echinoid phagocytosis. Dev Comp Immunol 5: 423–431

    Google Scholar 

  • Bertheussen K (1982b) Receptors for complement on echinoid phagocytes II. Purified human complement mediates echinoid phagocytosis. Dev Comp Immunol 5: 635–642

    Google Scholar 

  • Bertheussen K (1983) Complement-like activity in sea urchin coelomic fluid. Dev Comp Immunol 7: 21–31

    PubMed  CAS  Google Scholar 

  • Bilej M, Vetvicka V, Tuckova L, Trebichavsky I, Koukal M, Sima P (1990) Phagocytosis of synthetic particles in earthworms: effect of antigenic stimulation and opsonization. Folia Biol 36: 273

    CAS  Google Scholar 

  • Bilej M, Tuckova L, Rejnek J (1993) The fate of protein antigen in earthworms—study in vitro. Immunol Lett 35: 1–6

    PubMed  CAS  Google Scholar 

  • Bitter-Suermann D (1993) Influence of bacterial polysialic capsules on host defense— masquerade and mimicry. In: Roth J, Rutishauser U, Troy FA (eds) Polysialic acid. Birkhauser, Basel, pp 11–24

    Google Scholar 

  • Blake PA, Weaver RE, Hollis DG (1980) Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34: 341–367

    PubMed  CAS  Google Scholar 

  • Boman HG (1991) Antibacterial peptides: key components needed in immunity. Cell 65: 205–207

    PubMed  CAS  Google Scholar 

  • Bomann HG, Hultmark D (1981) Cell-free immunity in insects. Trends Biochem Sci 6: 306–309

    Google Scholar 

  • Boyd WC, Shapleigh E (1954) Antigenic relations of blood group antigens as suggested by tests with lectins. J Immunol 73: 226–231

    PubMed  CAS  Google Scholar 

  • Bretting H, Kabat EA (1976) Purification and characterisation of the agglutinins from the sponge Axinella polypoides and a study of their combining sites. Biochemistry 15: 3228–3236

    PubMed  CAS  Google Scholar 

  • Bretting H, Königsmann K (1979) Investigations on the lectin-producing cells in the sponge Axinella polypoides ( Schmidt ). Cell Tissue Res 201: 487–497

    PubMed  CAS  Google Scholar 

  • Bretting H, Kabat EA, Liao J, Pereira MEA (1976) Purification and characterisation of the agglutinins from the sponge Aaptos papillata and a study of their combining sites. Biochemistry 15: 5029–5038

    PubMed  CAS  Google Scholar 

  • Buss LW, Moore JL, Green DR (1985) Autoreactivity and self/tolerance in an invertebrate. Nature 313: 400

    Google Scholar 

  • Canicatti C, Pagliara P, Stabili L (1992) Sea urchin coelomic fluid agglutinin mediates coelomocyte adhesion. Eur J Cell Biol 58: 291–295

    PubMed  CAS  Google Scholar 

  • Cheng TC (1992) Requirement of a chelator during ionophore-stimulated release of acid phosphatase from Crassostrea virginica hemocytes. J Invertebr Pathol 59: 308–314

    CAS  Google Scholar 

  • Chu F-LE (1988) Humoral defense factors in marine bivalves. Am Fish Soc Spec Publ 18: 178–188

    Google Scholar 

  • Cohen MS, Sparling PF (1992) Mucosal infection with Neisseria gonorrhoeae: bacterial adaptation and mucosal defenses. J Clin Invest 89: 1699–1705

    PubMed  CAS  Google Scholar 

  • Coombe DR, Ey PL, Jenkin CR (1984) Self/non-self recognition in invertebrates. Q Rev Biol 59: 231–255

    Google Scholar 

  • Cooper DNW, Haywood-Reid PL, Springer WR, Barondes SH (1986) Bacterial glycoconjugates are natural ligands for the carbohydrate binding site of Discoidin I and influence on its cellular compartmentalization. Dev Biol 114: 416–425

    CAS  Google Scholar 

  • Cooper EL (1993) The echinoid immune system revisited. Immunol Today 14: 92

    PubMed  CAS  Google Scholar 

  • Cooper EL, Wright RK, Stein EA, Roch PG, Mansour MH (1987) Immunity in earthworms and tunicates, with special reference to receptor origins. In: Greenberg AL (ed) Invertebrate models. Cell Receptors and Cell Communication. Alan R Liss, Basel, pp 79–103

    Google Scholar 

  • Cooper EL, Rinkevich B, Uhlenbruck G, Valembois P (1992) Invertebrate immunity—another viewpoint (editorial). Scan J Immunol 35: 247–266

    CAS  Google Scholar 

  • Corfield AP, Schauer R (1982) Occurrence of sialic acids. In: Schauer R (ed) Sialic acids: chemistry, metabolism and function. Cell Biol Monogr, Springer, Berlin Heidelberg New York, pp 5–39

    Google Scholar 

  • Danguy A, Kiss R, Pasteels J-L (1988) Lectins in histochemistry: a survey. Biol Struct Morphol 1: 93–106

    CAS  Google Scholar 

  • Dunn PE (1986) Biochemical aspects of insect immunology. Annu Rev Entomol 31: 321–339

    CAS  Google Scholar 

  • Ey PL, Jenkin CR (1982) Molecular basis of self/non-self discrimination in the invertebrata. In: Cohen N, Sigel N (eds) Phylogeny and ontogeny. Plenum Press, New York, pp 321–391

    Google Scholar 

  • Farley CA (1977) Neoplasms in estuarine molluscs and approaches to estuarine causes. Ann NY Acad Sci 298: 225–232

    Google Scholar 

  • Faulhaber LM, Karp RD (1992) A diphasic immune response against bacteria in the American cockroach. Immunology 75: 378–381

    PubMed  CAS  Google Scholar 

  • Faye I (1990) Acquired immunity in insects: the recognition of nonself and the subsequent onset of immune protein genes. Res Immunol 141: 927–932

    PubMed  CAS  Google Scholar 

  • Fisher WS (1992) Occurrence of agglutinins in the pallial cavity mucus of oysters. J Exp Mar Biol Ecol 162: 1–13

    Google Scholar 

  • Fisher WS, DiNuzzo AR (1991) Agglutination of bacteria and erythrocytes by serum from six species of marine molluscs. J Invertebr Pathol 57: 380–394

    PubMed  CAS  Google Scholar 

  • Fries CR (1984) Protein hemolymph factors and their roles in invertebrate defense mechanisms: a review. In: Cheng, TC (ed) Invertebrate blood, cells and serum factors. Plenum Press, New York, pp 49–109

    Google Scholar 

  • Fuhrman MH, Suhan JP, Ettensohn CA (1992) Developmental expression of echinonectin, an endogenous lectin of the sea urchin embryo. Dev Growth Differen 34: 137–150

    CAS  Google Scholar 

  • Giga Y, Ikai A, Takahashi K (1987) The complete amino acid sequence of echinoidin, a lectin from the coelomic fluid of the sea urchin Anthocidaris crassispina. Homologies with mammalian and insect lectins. J Biol Chem 262: 6197–6203

    PubMed  CAS  Google Scholar 

  • Gupta AP (1986) Hemocytic and humoral immunity in arthropods. Wiley, New York

    Google Scholar 

  • Hapner KD, Stebbins MR (1986) Biochemistry of arthropod agglutinins. In: Gupta AP (ed) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 463–491

    Google Scholar 

  • Hardy SW, Fletcher TC, Olafsen J A (1977a) Aspects of cellular and humoral defence mechanisms in the Pacific oyster, Crassostrea gigas. In: Solomon JB, Horton JD (eds) Developmental immunobiology. Elsevier, Amsterdam, pp 59–66

    Google Scholar 

  • Hardy SW, Grant PT, Fletcher TC (1977b) A haemagglutinin in the tissue fluid of the Pacific oyster, Crassostrea gigas, with specificity for sialic acid residues in glycoproteins. Experientia (Basel) 33: 767–768

    CAS  Google Scholar 

  • Hoffmann JA, Hetru C (1992) Insect defensins—inducible antibacterial peptides. Immunol Today 13: 411–415

    PubMed  CAS  Google Scholar 

  • Hoffmann J A, Hetru C, Reichhart JM (1993) The humoral antibacterial response of Drosophila. FEBS Lett 325: 63–66

    PubMed  CAS  Google Scholar 

  • Hokama Y, Coleman M, Riley R (1962) In vitro effects of C-reactive-protein on phagocytosis. J Bacteriol 83: 1017–1024

    PubMed  CAS  Google Scholar 

  • Ito T, Ito Y, Osada M, Mori K (1992) Identification of opsonin in the coelomic fluid of the sea urchin Strongylocentrotus nudus. Nippon Susan Gakkasaki 58: 2119–2124

    CAS  Google Scholar 

  • Janda JM, Powers C, Bryant RG, Abbott SL (1988) Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1: 245–267

    PubMed  CAS  Google Scholar 

  • Jenkin CR, Hardy D (1975) Recognition factors of the crayfish and the generation of diversity. In: Hildeman WH, Benedict AA (eds) Immunologic phylogeny. Plenum Press, New York, pp 55–64

    Google Scholar 

  • Jennings HJ, Katzenellenbogen E, Lugowski C, Michon F, Roy R, Kasper DL (1984) Structure, conformation and immunology of sialic acid-containing polysaccharides of human pathogenic bacteria. Pure Appl Chem 56: 893–905

    CAS  Google Scholar 

  • Jomori T, Natori S (1992) Function of the lipopolysaecharide-binding protein of Periplaneta americana as an opsonin. FEBS Lett 296: 283–286

    PubMed  CAS  Google Scholar 

  • Kaaya GP (1989) A review of the progress made in recent years on research and understanding of immunity in insect vectors of human and animal diseases. Insect Sci Appl 10: 751–770

    Google Scholar 

  • Kanaley SA, Ford SE (1990) Lectin binding characteristics of hemocytes and parasites in the oyster, Crassostrea virginica, infected with Haplosporidium nelsoni ( MSX ). Parasite Immunol 12: 633–646

    PubMed  CAS  Google Scholar 

  • Kaneshiro ES, Karp RD (1980) The ultrastructure of the celomocytes of the sea star Dermasteria imbricata. Biol Bull 159: 295–310

    Google Scholar 

  • Kawauchi H, Hosono M, Takayanagi Y, Nitta K (1993) Agglutinins from aquatic insects: tumor cell agglutination activity. Experientia 49: 358–361

    PubMed  CAS  Google Scholar 

  • Kedzierska B (1978) N-acetylneuraminic acid: a constituent of the lipopolysaccharide of Salmonella toucra. Eur J Biochem 91: 545–552

    PubMed  CAS  Google Scholar 

  • Kéry V (1991) Lectin-carbohydrate interactions in immunoregulation. Int J Biochem 23: 631–640

    PubMed  Google Scholar 

  • Kilpatrick J, Volanakis J (1985) Opsonic properties of C-reactive protein. Stimulation by phorbol myristate acetate enables human neutrophils to phagocytize C-reactive protein- coated cells. J Immunol 134: 3364–3370

    Google Scholar 

  • Kimbrell DA (1991) Insect antibacterial proteins: not just for insects and against bacteria. Bioessays 13: 657–663

    PubMed  CAS  Google Scholar 

  • Kobayashi A, Matsui M, Kubo T, Natori S (1993) Purification and characterization of a 59-kilodalton protein that specifically binds to NF-kappa-B-binding motifs of the defense protein genes of Sarcophaga peregrina (the flesh fly). Mol Cell Biol 13: 4049–4056

    PubMed  CAS  Google Scholar 

  • Kolb H (1977) On the phylogenetic origin of the immune system. A hypothesis. Dev Comp Immunol 1: 193–206

    PubMed  CAS  Google Scholar 

  • Kolb-Bachofen V (1991) A review on the biological properties of C-reactive protein. Immunobiology 183: 133–145

    PubMed  CAS  Google Scholar 

  • Komano H, Natori S (1985) Participation of Sarcophaga peregrina humoral lectin in the lysis of sheep red blood cells injected into the abdominal cavity of larvae. Dev Comp Immunol 9: 31–40

    PubMed  CAS  Google Scholar 

  • Komano H, Mizuno D, Natori S (1980) Purification of a lectin induced in the hemolymph of Sarcophaga peregrina larvae on injury. J Biol Chem 255: 2919–2924

    PubMed  CAS  Google Scholar 

  • Köttgen E, Hell B, Kage A, Tauber R (1992) Lectin specificity and binding characteristics of human C-reactive protein. J Immunol 149: 445–453

    PubMed  Google Scholar 

  • Lackie A, Vasta G (1988) The role of galactosyl-binding lectin in the cellular immune response of the cockroach Periplaneta americana ( Dictyoptera ). Immunology 64: 353–357

    Google Scholar 

  • Lasky LA (1992) Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science 258: 964–969

    PubMed  CAS  Google Scholar 

  • Lassegués M, Roch P, Valembois P (1989) Antibacterial activity of Eisenia fetida andrei coelomic fluid. 2. Specificity of the induced activity. J Invertebr Pathol 54: 28–31

    Google Scholar 

  • Lauckner G (1983) Disease of Mollusca: bivalvia. In: Kinne O (ed) Diseases of marine animals. Biol Anst Helgoland, Hamburg, pp 477–962

    Google Scholar 

  • Maki JS, Mitchell R (1985) Involvement of lectins in the settlement and metamorphosis of marine invertebrate larvae. Bull Mar Sci 37: 675–683

    Google Scholar 

  • Mandal C, Mandal C (1990) Sialic acid binding lectins. Experientia 46: 433–441

    PubMed  CAS  Google Scholar 

  • Mandrell RE, Smith H, Jarvis GA, Griffiss JM, Cole JA (1993) Detection and some properties of the sialyltransferase implicated in the sialylation of lipopolysaccharide of Neisseria gonorrhoeae. Microbiol Pathol 14: 307–313

    CAS  Google Scholar 

  • Marchalonis JJ (1990) Ancient problems and new beginnings: Summary of UCLA colloquium on defense molecules. In: Marchalonis JJ, Reinisch CL (eds) Defense molecules. Wiley, New York, pp 295–304

    Google Scholar 

  • Marchalonis JJ, Edelman GM (1968) Isolation and characterisation of a haemagglutinin from Limulus polyphemus. J Mol Biol 32: 453–465

    CAS  Google Scholar 

  • McHenery JG, Birkbeck TH (1985) Uptake and processing of cultured microorganisms by bivalves. J Exp Mar Biol Ecol 90: 145–163

    CAS  Google Scholar 

  • Müller WEG, Zahn RK, Kurelec B, Lucu C, Müller I, Uhlenbruck G (1981) Lectin, a possible basis for symbiosis between bacteria and sponges. J Bacteriol 145: 548–558

    PubMed  Google Scholar 

  • Müller WEG, Maidhof A, Zahn RK, Conrad J, Rose T, Stefanovich P, Muller I, Friese U, Uhlenbruck G (1984) Biochemical basis for the symbiotic relationship Didemnum-Prochloron (Prochlorophyta). Biol Cell 51: 381–388

    Google Scholar 

  • Nagasawa Y, Kurata S, Komano H, Natori S (1993) Purification and heterogeneous localization of sarcophaga lectin receptor on the surface of imaginal discs of Sarcophaga peregrina (flesh fly). Dev Growth Diff 35: 331–340

    CAS  Google Scholar 

  • Natori S (1990) Dual functions of insect immunity proteins in defence and development. Res Immunol 141: 938–939

    PubMed  CAS  Google Scholar 

  • Nguyen NY, Suzuki A, Cheng S-M, Zon G, Liu T-Y (1986) Isolation and characterization of Limulus C-reactive protein genes. J Biol Chem 261: 10450–10455

    PubMed  CAS  Google Scholar 

  • Olafsen JA (1986) Invertebrate lectins: biochemical heterogeneity as a possible key to their biological function. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 94–111

    Google Scholar 

  • Olafsen JA (1988) Role of lectins in invertebrate humoral defense. Am Fish Soc Spec Publ 18: 189–205

    Google Scholar 

  • Olafsen JA (1995) Role of lectins (C-reactive proteins) in defense of marine bivalves against bacteria. In: Mestecky J, Russel MW, Jackson S, Michalek SM, Tlaskalova H, Sterzl J (eds) Advances in mucosal immunology, vol. A. Plenum Press, New York, pp 343–348

    Google Scholar 

  • Olafsen JA, Roberts RR (1993) Salmon disease. In: Heen K, Monahan RL, Utter F (eds) Salmon aquaculture: an overview of recent research. Blackwell, Fishing News Books, Oxford, pp 166–186

    Google Scholar 

  • Olafsen JA, Fletcher TC, Grant PT (1992) Agglutinin activity in Pacific oyster (Crassostrea gigas) hemolymph following in vivo Vibrio anguillarum challenge. Dev Comp Immunol 16: 123–138

    PubMed  CAS  Google Scholar 

  • Olafsen JA, Mikkelsen HV, Giaever H, Hansen GH (1993) Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl Environ Microbiol 59: 1848–1854

    PubMed  CAS  Google Scholar 

  • Ottaviani E, Franchini A, Franceschi C (1993) Presence of several cytokine-like molecules in molluscan hemocytes. Biochem Biophys Res Commun 195: 984–988

    PubMed  CAS  Google Scholar 

  • Parish CR (1977) Simple model for self-non-self-discrimination in invertebrates. Nature 267: 711–713

    PubMed  CAS  Google Scholar 

  • Pauley GB, Granger GA, Krassner SM (1971a) Characterization of a natural agglutinin present in the hemolymph of the California sea hare, Aplysia California. J Invertebr Pathol 18: 207–218

    PubMed  CAS  Google Scholar 

  • Payne MJ, Campbell S, Kroll RG (1993) Separation of bacteria using agglutinins isolated from invertebrates. J Appl Bacteriol 74: 276–283

    PubMed  CAS  Google Scholar 

  • Pfeifer K, Haasemann M, Gamulin V, Bretting H, Fahrenholz F, Muller WEG (1993) S-Type lectins occur also in invertebrates—high conservation of the carbohydrate recognition domain in the lectin genes from the marine sponge Geodia cydonium. Glycobiol 3: 179–184

    CAS  Google Scholar 

  • Pipe R (1990) Hydrolytic enzymes associated with the granular haemocytes of the marine mussel Mytilus edulis. Histochem J 22: 595–603

    PubMed  CAS  Google Scholar 

  • Pistole TG (1976) Naturally occurring bacterial agglutinin in the serum of the horseshoe crab, Limulus polyphemus. J Invertebr Pathol 28: 153–154

    PubMed  CAS  Google Scholar 

  • Plytycz B, Seljelid R (1993) Bacterial clearance by the sea urchin, Strongylocentrotus droebachiensis—brief communication. Dev Comp Immunol 17: 283–289

    PubMed  CAS  Google Scholar 

  • Ratanapo S, Chulavatnatol M (1990) Monodin, a new sialic acid-specific lectin from black tiger prawn (Peneaus monodon). Comp Biochem Physiol B 97: 515–520

    Google Scholar 

  • Ratcliffe NA, Götz P (1990) Functional studies on insect haemocytes, including non-self recognition. Res Immunol 141: 919–923

    PubMed  CAS  Google Scholar 

  • Ratcliffe NA, White KH, Rowley AF, Walters IB (1982) Cellular defense systems of the Arthropoda. In: Cohen N, Sigel MM (eds) The reticuloendothelial system. Plenum Press, New York, pp. 167–255

    Google Scholar 

  • Rejnek J, Tuckova L, Sima P, Kostka J (1986) The proteins in Lumbricus terrestris and Eisenia foetida coelomic fluids and on coelomocytes reacting with sheep and goat IgG molecules. Dev Comp Immunol 10: 467–476

    PubMed  CAS  Google Scholar 

  • Rejnek J, Tuckova L, Zikan J, Tomana M (1991) The interaction of a protein from the coelomic fluid of earthworms with staphylococcal protein-A. Dev Comp Immunol 15: 269–277

    PubMed  CAS  Google Scholar 

  • Rejnek J, Tuckova L, Sima P, Bilej M (1993) The fate of protein antigen in earthworms—study in vivo. Immunol Lett 36: 131–136

    PubMed  CAS  Google Scholar 

  • Renwrantz L (1983) Involvement of agglutinins (lectins) in invertebrate defense reactions: the immunobiological importance of carbohydrate-specific binding molecules. Dev Comp Immunol 7: 603–608

    CAS  Google Scholar 

  • Renwrantz L (1986) Lectins in molluscs and arthropods: their occurrence, origin and roles in immunity. Symp Zool Soc Lond 56: 81–93

    Google Scholar 

  • Renwrantz L, Stahmer A (1983) Opsonizing properties of an isolated hemolymph agglutinin and demonstration of lectin-like recognition molecules at the surface of hemocytes from Mytilus edulis. J Comp Physiol 149: 535–546

    CAS  Google Scholar 

  • Rittschof D, Bonaventura J (1986) Maeromolecular cues in marine systems. J Chem Ecol 12: 1013–1023

    CAS  Google Scholar 

  • Robey FA, Liu T (1981) Limulin: a C-reactive protein from Limulus polyphemus. J Biol Chem 256: 969–975

    PubMed  CAS  Google Scholar 

  • Roch P, Lassegues M, Valembois P (1991) Antibacterial activity of Eisenia fetida andrei coelomic fluid. 3. Relationship within the polymorphic hemolysins. Dev Comp Immunol 15: 27–32

    Google Scholar 

  • Roche AC, Monsigny M (1974) Purification and properties of limulin: a lectin (agglutinin) from haemolymph of Limulus polyphemus. Biochim Biophys Acta 371: 242–254

    PubMed  CAS  Google Scholar 

  • Roth J, Kempf A, Reuter G, Schauer R, Gehring WJ (1992) Occurrence of sialic acids in Drosophila melanogaster. Science 256: 673–675

    PubMed  CAS  Google Scholar 

  • Roth RI, Tobias PS (1993) Lipopolysaccharide-binding proteins of Limulus amebocyte lysate. Infect Immun 61: 1033–1039

    PubMed  CAS  Google Scholar 

  • Sarbadhikary SB, Bhadra R (1990) Immunomodulatory stimulation of an invertebrate circulatory lectin by its haptenic molecules of pathogenic origin. Dev Comp Immunol 14: 31–38

    PubMed  CAS  Google Scholar 

  • Schauer R (1982) Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 40: 131–234

    PubMed  CAS  Google Scholar 

  • Schauer R (1985) Sialic acids and their roles as biological masks. Trends Biochem Sci 10: 357–360

    CAS  Google Scholar 

  • Schmidt O, Faye I, Lindström-Dinnetz I, Sun SC (1993) Specific immune recognition of insect hemolin. Dev Comp Immunol 17: 195–200

    PubMed  CAS  Google Scholar 

  • Shimizu S, Ito M, Niwa M (1977) Lectins in the hemolymph of the Japanese horseshoe crab Tachypleus tridentatus. Biochim Biophys Acta 500: 71–79

    PubMed  CAS  Google Scholar 

  • Shishikura F, Sekiguchi K (1983) Agglutinins in the horseshoe crab hemolymph: purification of a potent agglutinin of horse erythrocytes from the hemolymph of Tachypleus tridentatus, the Japanese horseshoe crab. J Biochem 93: 1539–1546

    PubMed  CAS  Google Scholar 

  • Sima P, Vetvicka V (1990) Evolution of immune reactions. CRC Press, Boca Raton

    Google Scholar 

  • Sima P, Vetvicka V (1993) Evolution of immune reactions. Crit Rev Immunol 13: 83–114

    PubMed  CAS  Google Scholar 

  • Slifkin M, Doyle RJ (1990) Lectins and their application to clinical microbiology. Clin Microbiol Rev 3: 197–218

    PubMed  CAS  Google Scholar 

  • Smith LC, Davidson EH (1992) The echinoid immune system and the phylogenetic occurrence of immune mechanisms in deuterostomes. Immunol Today 13: 356–362

    PubMed  CAS  Google Scholar 

  • Söderhäll K, Aspan A, Duvic B (1990) The proPO-system and associated proteins: role in cellular communication in arthropods. Res Immunol 141: 896–907

    PubMed  Google Scholar 

  • Solomon JB (1986) Invertebrate receptors and recognition molecules involved in immunity and determination of self and non-self. In: Gorczynski RM (ed) Receptors in cellular recognition and developmental processes. Academic Press, London, pp 9–43

    Google Scholar 

  • Stebbins MR, Hapner KD (1986) Isolation, characterization and inhibition of arthropod agglutinins. In: Gupta, AP (ed) Hemocytic and humoral immunity in arthropods. Wiley, New York, pp 463–491

    Google Scholar 

  • Stein EA, Soheil Y, Younai S, Cooper EL (1986) Bacterial agglutinins of the earthworm Lumbricus terrestris. Comp Biochem Physiol 84B: 409–415

    Google Scholar 

  • Stein EA, Younai S, Cooper EL (1987) Hemagglutinins and bacterial agglutinins of earthworms. In: Cooper EL, Langlet C, Bierne J (eds) Developmental and comparative immunology. Alan R Liss, New York, pp 79–89

    Google Scholar 

  • Stewart J (1992) Immunoglobulins did not arise in evolution to fight infection. Immunol Today 13: 396–399

    PubMed  CAS  Google Scholar 

  • Super M, Ezekowitz RAB (1992) The role of mannose-binding proteins in host defense. Infect Agent Dis 1: 194–199

    CAS  Google Scholar 

  • Suzuki T, Mori K (1990) Hemolymph lectin of the pearl oyster, Pinctada fiicata martensii: a possible non-self recognition system. Dev Comp Immunol 14: 161–173

    PubMed  CAS  Google Scholar 

  • Takahashi H, Komano H, Kawaguchi N, Kitamura N, Nakanishi S, Natori S (1985a) Cloning and sequencing of cDNA of Sarcophaga peregrina humoral lectin induced on injury in the body wall. J Biol Chem 260: 12228–12233

    PubMed  CAS  Google Scholar 

  • Takahashi H, Komano H, Natori S (1985b) Expression of the lectin gene in the Sarcophaga peregrina during normal development and under conditions where the defense mechanism is activated. J Insect Physiol 32: 771–779

    Google Scholar 

  • Tamamura H, Ikoma R, Niwa M, Funakoshi S, Murakami T, Fujii N (1993) Antimicrobial activity and conformation of Tachyplesin-I and its analogs. Chem Pharm Bull Tokyo 41: 978–980

    PubMed  CAS  Google Scholar 

  • Tamplin ML, Capers GM (1992) Persistence of Vibrio vulnificus in tissues of Gulf Coast oysters, Crassostrea virginica, exposed to seawater disinfected with UV light. Appl Environ Microbiol 58: 1506–1510

    PubMed  CAS  Google Scholar 

  • Tamplin ML, Fisher WS (1989) Occurrence and characteristics of agglutination of Vibrio cholerae by serum of the eastern oyster, Crassostrea virginica. Appl Environ Microbiol 55: 2882–2887

    PubMed  CAS  Google Scholar 

  • Tillett WS, Francis TJ (1930) Serological reactions in pneumonia with a non-protein somatic fraction of Pneumococcus. J Exp Med 52: 561–571

    PubMed  CAS  Google Scholar 

  • Trench (1979) The cell biology of plant animal symbiosis. Annu Rev Plant Physiol 30: 485–531

    CAS  Google Scholar 

  • Tsuboi I, Matsukawa M, Sato N (1993a) Isolation and characterization of a sialic acid-specific lectin from hemolymph of the southeast asian horseshoe crab Tachypleus gigas. Biosci Biotechnol Biochem 57: 1237–1242

    PubMed  CAS  Google Scholar 

  • Tsuboi I, Matsukawa M, Sato N, Kimura S (1993b) Isolation and characterization of a sialic acid-specific binding lectin from the hemolymph of asian horseshoe crab, Tachypleus tridentatus. Biochim Biophys Acta 1156: 255–262

    PubMed  CAS  Google Scholar 

  • Tsuboi I, Yanagi K, Wada K, Kimura S, Ohkuma S (1993c) Isolation and characerization of a novel sialic acid-specific lectin from hemolymph of Limulus polyphemus. Comp Biochem Physiol [B] 104: 19–26

    Google Scholar 

  • Tuckova L, Rejnek J, Bilej M, Pospisil R (1991) Characterization of antigen-binding protein in earthworms Lumbricus terrestris and Eisenia foetida. Dev Comp Immunol 15: 263–268

    PubMed  CAS  Google Scholar 

  • Valembois, P, Roch, P and Lassegues, M (1986) Antibacterial molecules in annelids. In: Brehelin M (ed) Immunity in invertebrates. Springer, Berlin Heidelberg New York, pp 74–93.

    Google Scholar 

  • Valembois P, Lassegues M, Hirigoyenberry F, Seymour J (1993) Clearance and breakdown of pathogenic bacteria injected into the body cavity of the earthworm Eisenia fetida andrei. Comp Biochem Physiol [C] 106: 255–260

    Google Scholar 

  • Van der Knaap WPW, Tensen CP, Kroese FGM, Boerrigter-Barrendsen LH (1982) Adaptive defense reactions against bacteria in the pond snail Lymnea stagnalis. Dev Comp Immunol 6: 775–780

    PubMed  Google Scholar 

  • Van der Knaap W, Boots A, Sminia T (1983) Immunorecognition in Lymnea stagnalis. Dev Comp Immunol 7: 645–648

    Google Scholar 

  • Van der Knaap WPW, Adema CM, Sminia T (1993) Invertebrate blood cells—morphological and functional aspects of the haemocytes in the pond snail Lymnaea stagnalis. Comp Haematol Int 3: 20–26

    Google Scholar 

  • Vargas-Albores F, Guzman A, Ochoa JL (1992) Size-dependent haemagglutinating activity in the haemolymph from sub-adult blue shrimp (Penaeus stylirostris Stimpson). Comp Biochem Physiol [A] 103: 487–491

    Google Scholar 

  • Vargas-Albores F, Guzman MA, Ochoa JL (1993) A lipopolysaccharide-binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp Biochem Physiol [B] 104: 407–413

    Google Scholar 

  • Vasta GR (1986) Serum and hemocyte-associated lectins of the oyster, Crassostrea virginica. In: Bög-Hansen, TC and Van Driessch, E (eds) Lectins. De Gruyter, New York, pp 677–685

    Google Scholar 

  • Vasta GR (1990) Invertebrate lectins, C-reactive proteins and serum amyloid—structural relationships and evolution. In: Marchalonis JJ, Reinisch CL (eds) Defense molecules. Wiley, New York, pp 183–199

    Google Scholar 

  • Vasta GR (1991) The multiple biological roles of invertebrate lectins: their participation in nonself recognition mechanisms. In: Warr GW, Cohen N (eds) Phylogenesis of immune functions. CRC Press Boca Raton, pp 74–101

    Google Scholar 

  • Vasta GR, Warr G, Marchalonis JJ (1982) A lectin from the tunicate Didemnum candidum which binds terminal D-galactose. Proceedings of the Federation of the American Soc Exp Biol 41: 4461

    Google Scholar 

  • Vasta GR, Marchalonis JJ (1983) Humoral recognition factors in the Arthropoda. The specificity of Chelicerata serum lectins. Am Zool 23: 157–171

    CAS  Google Scholar 

  • Vasta GR, Marchalonis JJ (1984) Immuno biological significance of invertebrate lectins. In: Cohen N (ed) Recognition proteins, receptors and probes: invertebrates. Alan R Liss, New York, pp 177–191

    Google Scholar 

  • Vasta GR, Marchalonis J J (1987) Invertebrate agglutinins and the evolution of humoral and cellular recognition factors. In: Greenberg AH (ed) Invertebrate models. Cell receptors and cell communication. Karger, Basel, pp 104–117

    Google Scholar 

  • Vasta GR, Sullivan JT, Cheng TC, Marchalonis JJ, Warr GW (1982a) A cell membrane-associated lectin of the oyster hemocyte. J Invertebr Pathol 40: 367–377

    CAS  Google Scholar 

  • Vasta GR, Warr GW, Marchalonis JJ (1982b) Tunicate lectins: distribution and specificity. Comp Biochem Physiol 73: 887–900

    Google Scholar 

  • Vasta GR, Hunt JC, Marchalonis JJ, Fish WW (1986) Galactosyl-binding lectin from the tunicate Didemnum candidum. Purification and physicochemical properties. J Biol Chem 261: 9174–9181

    PubMed  CAS  Google Scholar 

  • Wardlaw AC, Unkless SE (1978) Bactericidal activity of coelomic fluid from the sea urchin, Echinus esculentus. J Invertebr Pathol 32: 25–34

    Google Scholar 

  • Wiesner A (1992) Characteristics of inert beads provoking humoral immune responses in Galleria mellonella larvae. J Insect Physiol 38: 533–541

    CAS  Google Scholar 

  • Wiesner A (1993) Further observations on the induction of immunity by hemolymph transfer in Galleria mellonella. Dev Comp Immunol 17: 291–300

    PubMed  CAS  Google Scholar 

  • Yeaton RW (1981a) Invertebrate lectins: I. Occurrence. Dev Comp Immunol 5: 391–402

    CAS  Google Scholar 

  • Yeaton RW (1981b) Invertebrate lectins: II Diversity of specificity, biological synthesis and function in recognition. Dev Comp Immunol 5: 535–545

    PubMed  CAS  Google Scholar 

  • Yeo DSA, Ding JL, Ho B (1993) An antimicrobial factor from the plasma of the horseshoe crab, Carcinoscorpius rotundicauda. Microbios 73: 45–58

    CAS  Google Scholar 

  • Zachmann JE, Molina JAE (1993) Presence of culturable bacteria in cocoons of the earthworm Eisenia fetida. Appl Environ Microbiol 59: 1904–1910

    PubMed  CAS  Google Scholar 

  • Zipris D, Gilboa-Garber N, Süsswein AJ (1986) Interaction of lectins from gonads and haemolymph of the sea-hare Aplysia with bacteria. Microbios 46: 193–198

    PubMed  CAS  Google Scholar 

  • ZoBell CE, Feltham CB (1938) Bacteria as food for certain marine invertebrates. J Mar Res 1: 312–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olafsen, J.A. (1996). Lectins: Models of Natural and Induced Molecules in Invertebrates. In: Cooper, E.L. (eds) Invertebrate Immune Responses. Advances in Comparative and Environmental Physiology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79847-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79847-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79849-8

  • Online ISBN: 978-3-642-79847-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics