Skip to main content

The Mechanism of Adenovirus DNA Integration: Studies in a Cell-Free System

  • Chapter
The Molecular Repertoire of Adenoviruses II

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/2))

Abstract

The understanding of recombinative interactions between foreign (viral) DNA and mammalian DNA is of interest not only in tumor virology, gene therapy, and the generation of transgenic animals, but also for models about the possible evolutionary role of foreign DNA integration into established genomes. Foreign DNA can recombine with the host DNA in mammalian cells and thus become integrated into the cellular genome by what has been termed “nonhomologous recombination.” Nonhomologous recombination plays a central role in the biology of mammalian systems and is thought to be more common in mammalian cells than homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboussekhara A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to prokaryotic RecA proteins. Mol Cell Biol 12: 3224–3234

    Google Scholar 

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) On the formation of spontaneous deletions: the importance of short sequence homologies in the generation of large deletions. Cell 29: 319–328

    PubMed  CAS  Google Scholar 

  • Alt FW, Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci USA 79: 4118–4122

    PubMed  CAS  Google Scholar 

  • Alt FW, Blackwell TK, Depinho RA, Reth MG, Yancopoulos GD (1986) Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89: 5–30

    PubMed  CAS  Google Scholar 

  • Basile G, Aker M, Mortimer RK (1992) Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol Cell Biol 12: 3235–3246

    PubMed  CAS  Google Scholar 

  • Blackwell TK, Moore MW, Yancopoulos GD, Suh H, Lutzker S, Scising E, Alt FW (1986) Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature 324: 585–589

    PubMed  CAS  Google Scholar 

  • Brown PO, Bowermann B, Varmus HE, Bishop JM (1987) Correct integration of retroviral DNA in vitro. Cell 49: 347–356

    PubMed  CAS  Google Scholar 

  • Bullock P, Champoux JJ, Botchan MR (1985) Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science 230: 954–958

    PubMed  CAS  Google Scholar 

  • Deuring R, Doerfler W (1983) Proof of recombination between viral and cellular genomes in human KB cells productively infected by adenovirus type 12: structure of the junction site in a symmetric recombinant ( SYREC ). Gene 26: 283–289

    PubMed  CAS  Google Scholar 

  • Deuring R, Klotz G, Doerfler W (1981a) An unusual symmetric recombinant between adenovirus type 12 DNA and human cell DNA. Proc Natl Acad Sci USA 78: 3142–3146

    CAS  Google Scholar 

  • Deuring R, Winterhoff U, Tamanoi F, Stabel S, Doerfler W (1981b) Site of linkage between adenovirus type 12 and cell DNAs in hamster tumour line CLAC3. Nature 293: 81–84

    CAS  Google Scholar 

  • Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Natl Acad Sci USA 60: 636–643

    PubMed  CAS  Google Scholar 

  • Doerfler W (1970) Integration of deoxyribonucleic acid of adenovirus type 12 into the deoxyribonucleic acid of baby hamster kidney cells. J Virol 6: 652–666

    PubMed  CAS  Google Scholar 

  • Doerfler W (1982) Uptake, fixation, and expression of foreign DNA in mammalian cells: the organization of integrated adenovirus DNA sequences. Curr Top Microbiol Immunol 101: 127–194

    PubMed  CAS  Google Scholar 

  • Doerfler W (1983a) DNA methylation and gene activity. Annu Rev Biochem 52: 93–124

    CAS  Google Scholar 

  • Doerfler W (ed) (1983b) The molecular biology of adenoviruses, vols 1, 2. Springer, Berlin Heidelberg NewYork (Current topics in microbiology and immunology, vols 109, 110 )

    Google Scholar 

  • Doerfler W (ed) (1984) The molecular biology of adenoviruses, vol 3. Springer, Berlin Heidelberg NewYork (Current topics in microbiology and immunology, vol 111 )

    Google Scholar 

  • Doerfler, W (1991 a) Patterns of DNA methylation—evolutionary vestiges of foreign DNA inactivation as a host defense mechanism: a proposal. Biol Chem Hoppe Seyler 372: 557–564

    CAS  Google Scholar 

  • Doerfler W (1991 b) Abortive infection and malignant transformation by adenoviruses: integration of viral DNA and control of viral gene expression by specific patterns of DNA methylation. Adv Virus Res 39: 89–128

    CAS  Google Scholar 

  • Doerfler W (1992) Transformation of cells by adenoviruses: less frequently discussed mechanisms. In: Doerfler W, Boehm P (eds) Malignant transformation by DNA viruses: molecular mechanisms. Verlag Chemie, Weinheim, pp 141–169

    Google Scholar 

  • Doerfler W (1993) Adenoviral DNA integration and changes in DNA methylation patterns: a different view of insertional mutagenesis. Prog Nucleic Acids Res Mol Biol 46: 1–36

    CAS  Google Scholar 

  • Doerfler W, Boehm P (eds) (1993) Virus strategies. Verlag Chemie, Weinheim

    Google Scholar 

  • Doerfler W, Gahlmann R, Stabel S, Deuring R, Lichtenberg U, Schulz M, Eick D, Leisten R (1983) On the mechanism of recombination between adenoviral and cellular DNAs: the structure of junction sites. CurrTop Microbiol Immunol 109: 193–228

    CAS  Google Scholar 

  • Doerfler W, Tatzelt J, Orend G, Schorr J, Rosahl T, Fechteier K, Zock C, Lichtenberg U (1993) Viral and cellular strategies on integrated adenovirus genomes. In: Doerfler W, Boehm P (eds) Virus strategies. Verlag Chemie, Weinheim, pp 369–400

    Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T et al. (1980) The structure and evolution of the human ß-globin gene family. Cell 21: 653–668

    PubMed  CAS  Google Scholar 

  • Eick D, Doerfler W (1982) Integrated adenovirus type 12 DNA in the transformed hamster cell line T637: Sequence arrangements at the termini of viral DNA and mode of amplification. J Virol 42: 317–321

    PubMed  CAS  Google Scholar 

  • Eick D, Stabel S, Doerfler W (1980) Revertants of adenovirus type 12-transformed hamster cell line T637 as tools in the analysis of integration patterns. J Virol 36: 41–49

    PubMed  CAS  Google Scholar 

  • Fechteier K, Herbertz S, Doerfler W (1995b) Integrative recombination of adenovirus typel 2 DNA with cellular DNA: Studied with purified nuclear proteins from uninfected or Ad12-infected hamster cells, (submitted)

    Google Scholar 

  • Franklin N (1971) Illegitimate recombination. In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Lab, Cold Spring Harbor NY, pp 175–194

    Google Scholar 

  • Freeman AE, Black PH, Vanderpool EA, Henry PH, Austin JB, Huebner RJ (1967) Transformation of primary rat embryo cells by adenovirus type 2: Proc Natl Acad Sci USA 58: 1205–1212

    PubMed  CAS  Google Scholar 

  • Gahlmann R, Doerfler W (1983) Integration of viral DNA into the genome of the adenovirus type 2-transformed hamster cell line HE5 without loss or alteration of cellular nucleotides. Nucleic Acids Res 11: 7347–7361

    PubMed  CAS  Google Scholar 

  • Gahlmann R, Leisten R, Vardimon L, Doerfler W (1982) Patch homologies and the integration of adenovirus DNA in mammalian cells. EMBO J 1: 1101–1104

    PubMed  CAS  Google Scholar 

  • Gahlmann R, Schulz M, Doerfler W (1984) Low molecular weight RNAs with homologies to cellular DNA at sites of adenovirus DNA insertion in hamster or mouse cells. EMBO J 3: 3263–3269

    PubMed  CAS  Google Scholar 

  • Gerondakis S, Cory S, Adams J (1984) Translocation of the myc cellular oncogene to the immunoglobulin heavy chain locus in the murine plasmacytomas is an imprecise reciprocal exchange. Cell 36: 973–982

    PubMed  CAS  Google Scholar 

  • Ginsberg H (ed) (1985) Adenoviruses. Plenum, New York

    Google Scholar 

  • Groneberg J, Doerfler W (1979) Revertants of adenovirus type-12-transformed hamster cells have lost part of the viral genomes. Int J Cancer 24: 67–74

    PubMed  CAS  Google Scholar 

  • Gronenberg J, Chardonnet Y, Doerfler W (1977) Integrated viral sequences in adenovirus type 12-transformed cells. Cell 10: 101–111

    Google Scholar 

  • Groneberg J, Sutter D, Soboll H, Doerfler W (1978) Morphological revertants of adenovirus type 12-transformed hamster cells. J Gen Virol 40: 635–645

    PubMed  CAS  Google Scholar 

  • Günthert U, Schweiger M, Stupp M, Doerfler W (1976) DNA methylation in adenovirus, adenovirus-transformed cells, and host cells. Proc Natl Acad Sci USA 73: 3923–3927

    PubMed  Google Scholar 

  • Hedrick SM, Cohen Dl, Nielsen EA, Davis MM (1984) Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308: 149–153

    PubMed  CAS  Google Scholar 

  • Heller H, Kämmer C, Wilgenbus P, Doerfler W (1995) The chromosomal insertion of foreign (adenovirus type 12 or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci USA 92 (in press)

    Google Scholar 

  • Hicks JB, Hinnen A, Fink GR (1978) Properties of yeast transformation. Cold Spring Harbor Symp Quant Biol 43: 1305–1313

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75: 1929–1933

    PubMed  CAS  Google Scholar 

  • Hogan A, Faust EA (1984) Short direct repeats mediate spontaneous high-frequency deletions in DNA of minute virus of mice. Mol Cell Biol 4: 2239–2242

    PubMed  CAS  Google Scholar 

  • Honjo T (1983) Immunoglobulin genes. Annu Rev Immunol 1: 499–528

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Lane WT (1962) Oncogenic effects in hamsters of human adenovirus types 12 and 18. Proc Natl Acad Sci USA 48: 2051–2058

    PubMed  CAS  Google Scholar 

  • Hughes SH, Shank PR, Spector DH, Kung H-J, Bishop JM et al. (1978) Proviruses of avian sarcoma virus are terminally redundant, co-extensive with unintegrated linear DNA and integrated at many sites. Cell 15: 1397–1410

    PubMed  CAS  Google Scholar 

  • Hwang L-HS, Gilboa E (1984) Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transfection. J Virol 50: 417–424

    PubMed  CAS  Google Scholar 

  • Jessberger R, Berg P (1991) Repair of deletions and double-strand gaps by homologous recombination in a mammalian in vitro system. Mol Cell Biol 11: 445–457

    PubMed  CAS  Google Scholar 

  • Jessberger R, Weisshaar B, Stabel S, Doerfler W (1989a) Arrangement and expression of integrated adenovirus type 12 DNA in the transformed hamster cell line HA12/7: amplification of Ad12 and c-myc DNAs and evidence for hybrid viral-cellular transcripts. Virus Res 13: 113–128

    PubMed  CAS  Google Scholar 

  • Jessberger R, Heuss D, Doerfler W (1989b) Recombination in hamster cell nuclear extracts between adenovirus type 12 DNA and two hamster preinsertion sequences. EM BO J 8: 869–878

    CAS  Google Scholar 

  • Johnson RS, Sheng M, Greenberg ME, Kolodner RD, Papaioannou VE, Spiegelman BM (1989) Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science 245: 1234–1236

    PubMed  CAS  Google Scholar 

  • King W, Patel MD, Lobel LI, Goff SP, Nguyen-Huu MC (1985) Insertion mutagenesis of embryonal carcinoma cells by retroviruses. Science 228: 554–558

    PubMed  CAS  Google Scholar 

  • Kowalczykowski SC (1991) Biochemistry of genetic recombination: energetics and mechanism of DNA strand exchange. Annu Rev Biophys Biophys Chem 20: 539–575

    PubMed  CAS  Google Scholar 

  • Kucherlapati RS, Ayares D, Hanneken A, Noonan K, Rauth S, Spencer JM, Wallace L, Moore PD (1984) Homologous recombination in monkey cells and human cell-free extracts. Cold Spring Harbor Symp Quant Biol 49: 191–197

    PubMed  CAS  Google Scholar 

  • Kuhlmann I, Doerfler W (1982) Shifts in the extent and patterns of DNA methylation upon explantation and subcultivation of adenovirus type 12-induced hamster tumor cells. Virology 118: 169–180

    PubMed  CAS  Google Scholar 

  • Kuhlmann I, Achten S, Rudolph R, Doerfler W (1982) Tumor induction by human adenovirus type 12 in hamsters: loss of the viral genome from adenovirus type 12-induced tumor cells is compatible with tumor formation. EMBO J 1: 79–86

    PubMed  CAS  Google Scholar 

  • Kunz BA, Haynes RH (1981) Phenomenology and genetic control of mitotic recombination in yeast. Annu Rev Genet 15: 57–89

    PubMed  CAS  Google Scholar 

  • Latt SA (1981) Sister chromatid exchange formation. Annu Rev Genet 15: 11–55

    PubMed  CAS  Google Scholar 

  • Lichtenberg U, Zock C, Doerfler W (1987) Insertion of adenovirus type 12 DNA in the vicinity of an intracisternal A particle genome in Syrian hamster tumor cells. J Virol 61: 2719–2726

    PubMed  CAS  Google Scholar 

  • Lin F-LM, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4: 1020–1034

    PubMed  CAS  Google Scholar 

  • Lin F-LM, Sperle K, Sternberg N (1985) Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci USA 82: 1391–1395

    PubMed  CAS  Google Scholar 

  • Liskay RM, Stachelek JL (1984) Evidence for intrachromosomal gene conversion in cultured mouse cells. Cell 35: 157–165

    Google Scholar 

  • Lonberg-Holm K, Philipson L (1969) Early events of virus-cell interaction in an adenovirus system. J Virol 4: 323–338

    PubMed  CAS  Google Scholar 

  • Malissen M, Minard K, Mjolsness S et al. (1984) Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the ß polypeptide. Cell 37: 1101–1110

    PubMed  CAS  Google Scholar 

  • Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo- derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348–352

    PubMed  CAS  Google Scholar 

  • Marvo SL, King SR, Jaskunas SR (1983) Role of short regions of homology in intermolecular illegitimate recombination events. Proc Natl Acad Sci USA 80: 2452–2456

    PubMed  CAS  Google Scholar 

  • McDougall JK, Dunn AR, Jones KW (1972) In situ hybridization of adenovirus RNA and DNA. Nature 236: 346–348

    PubMed  CAS  Google Scholar 

  • Mooslehner K, Karls U, Harbers K (1990) Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J Virol 64: 3056–3058

    PubMed  CAS  Google Scholar 

  • Morgan C, Rosenkranz HS, Mednis B (1969) Structure and development of viruses as observed in the electron microscope. V. Entry and uncoating of adenovirus. J Virol 4: 777–796

    PubMed  CAS  Google Scholar 

  • Morita T, Yoshimura Y, Yamamoto A, Murata K, Mori M, Yamamoto H, Matsushiro A (1993) A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc Natl Acad Sci USA 90: 6577–6580

    PubMed  CAS  Google Scholar 

  • Nickoloff JA, Reynolds RJ (1990) Transcription stimulates homologous recombination in mammalian cells. Mol Cell Biol 10: 4837–4845

    PubMed  CAS  Google Scholar 

  • Orend G, Kuhlmann I, Doerfler W (1991) Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells. J Virol 65: 4301–4308

    PubMed  CAS  Google Scholar 

  • Orend G, Linkwitz A, Doerfler W (1994) Selective sites of adenovirus (foreign) DNA integration into the hamster genome: changes in integration patterns. J Virol 68: 187–194

    PubMed  CAS  Google Scholar 

  • Orend G, Knoblauch M, Kämmer C, Tjia S, Schmitz B, Linkwitz A, Meyer zu Altenschildesche G, Maas J, Doerfler, W (1995a) The initiation of de novo methylation of foreign DNA integrated into a mammalian genome is not exclusively target by nucleotide sequence. J Virol 69: 1226–1242

    CAS  Google Scholar 

  • Orend G, Knoblauch M, Doerfler W (1995b) Selective loss of unmethylated segments of integrated Ad12 genomes in revertants of the adenovirus type 12-transformed cell line T637. (submitted)

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Yeast recombination: the association between double-strand gap repair and crossing-over. Proc Natl Acad Sci USA 80: 4417–4421

    PubMed  CAS  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78: 6354–6358

    PubMed  CAS  Google Scholar 

  • Pope JH, Rowe WP (1964) Immunofluorescent studies of adenovirus 12 tumors and of cells transformed or infected by adenoviruses. J Exp Med 120: 577–588

    PubMed  CAS  Google Scholar 

  • Roca AT, Cox MM (1990) The recA protein: structure and function. Crit Rev Biochem Mol Biol 25: 415–456

    PubMed  CAS  Google Scholar 

  • Rosahl T, Doerfler W (1988) Predominant association of adenovirus type 12 DNA with human chromosome 1 early in productive infection. Virology 162: 494–497

    PubMed  CAS  Google Scholar 

  • Rosahl T, Doerfler W (1992) Alterations in the levels of expression of specific cellular genes in adenovirus-infected and -transformed cells. Virus Res 26: 71–90

    PubMed  CAS  Google Scholar 

  • Roth D, Wilson J (1986) Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol Cell Biol 6: 4295–4304

    PubMed  CAS  Google Scholar 

  • Roth D, Wilson J (1988) Illegitimate recombination in mammalian cells. In: Kucherlapati RS, Smith GR (eds) Genetic recombination. ASM, Washington, pp 621–653

    Google Scholar 

  • Roth D, Porter TM, Wilson J (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5: 2599–2607

    PubMed  CAS  Google Scholar 

  • Ruley HE, Fried M (1983) Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature 304: 181–184

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491

    PubMed  CAS  Google Scholar 

  • Scherdin U, Rhodes K, Breindl M (1990) Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 64: 907–912

    PubMed  CAS  Google Scholar 

  • Scherer S, Davis RW (1980) Recombination of dispersed repeated DNA sequences in yeast. Science 209: 1380–1384

    PubMed  CAS  Google Scholar 

  • Schiestl RH, Dominska M, Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol 13: 2697–2705

    PubMed  CAS  Google Scholar 

  • Schorr J, Doerfler W (1992) Non-homologous recombination between adenovirus and AcNPV DNA fragments in cell-free extracts from insect Spodoptera frugiperda nuclei. Virus Res 28: 153–170

    Google Scholar 

  • Schröer J, Doerfler W (1995) Extensive association of adenovirus type 12 DNA with chromosomes early after the infection of hamster or human cells, (submitted)

    Google Scholar 

  • Schulz M, Doerfler W (1984) Deletion of cellular DNA at site of viral DNA insertion in the adenovirus type 12-induced mouse tumor CBA-12-1-T. Nucleic Acids Res 12: 4959–4976

    PubMed  CAS  Google Scholar 

  • Schulz M, Freisem-Rabien U, Jessberger R, Doerfler W (1987) Transcriptional activities of mammalian genomes at sites of recombination with foreign DNA. J Virol 61: 344–353

    PubMed  CAS  Google Scholar 

  • Shapiro JA (ed) (1983) Mobile genetic elements. Academic, New York

    Google Scholar 

  • Shinohara A, Ogawa, H, Ogawa, T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a recA-like protein. Cell 69: 457–470

    PubMed  CAS  Google Scholar 

  • Shinohara A, Ogawa H, Matsuda Y, Ushio N, Ikeo K, Ogawa T (1993) Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nature Genet 4: 239–243

    PubMed  CAS  Google Scholar 

  • Smith AJH, Berg P (1984) Homologous recombination between defective neo genes in mouse 3T6 cells. Cold Spring Harbor Symp Quant Biol 49: 171–181

    PubMed  CAS  Google Scholar 

  • Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal ß-globin locus by homologous recombination. Nature 317: 230–234

    PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503–517

    PubMed  CAS  Google Scholar 

  • Sprengel J, Schmitz B, Heuss-Neitzel D, Zock C, Doerfler W (1994) Nucleotide sequence of human adenovirus type 12 DNA: comparative functional analysis. J Virol 68: 379–389

    PubMed  CAS  Google Scholar 

  • Stabel S, Doerfler W (1982) Nucleotide sequence at the site of junction between adenovirus type 12 DNA and repetitive hamster cell DNA in transformed cell line CLAC1. Nucl Acids Res 10: 8007–8023

    PubMed  CAS  Google Scholar 

  • Stabel S, Doerfler W, Friis RR (1980) Integration sites of adenovirus type 12 DNA in transformed hamster cells and hamster tumor cells. J Virol 36: 22–40

    PubMed  CAS  Google Scholar 

  • Stahl, FW (1979) Genetic recombination: thinking about it in phage and fungi. Freeman, San Francisco

    Google Scholar 

  • Stringer JR (1982) DNA sequence homology and chromosomal deletion at a site of SV 40 DNA integration. Nature 296: 363–366

    PubMed  CAS  Google Scholar 

  • Sutter D, Westphal M, Doerfler W (1978) Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell 14: 569–585

    PubMed  CAS  Google Scholar 

  • Symington LS (1991) Double-strand-break repair and recombination catalyzed by a nuclear extract of Saccharomyces cerevisiae. EMBO J 10: 987–996

    PubMed  CAS  Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The-double-strand-break repair model for recombination. Cell 33: 25–35

    PubMed  CAS  Google Scholar 

  • Tatzelt J, Scholz B, Fechteier K, Jessberger R, Doerfler W (1992) Recombination between adenovirus type 12 DNA and a hamster preinsertion sequence in a cell-free system. J Mol Biol 226: 117–126

    PubMed  CAS  Google Scholar 

  • Tatzelt J, Fechteler K, Langenbach P, Doerfler W (1993) Fractionated nuclear extracts from hamster cells catalyze cell-free recombination at selective sequences between adenovirus DNA and a hamster preinsertion site. Proc Natl Acad Sci USA 90: 7356–7360

    PubMed  CAS  Google Scholar 

  • Thode S, Schäfer A, Pfeiffer P, Vielmetter W (1990) A novel pathway of DNA end-to-end joining. Cell 60: 921–928

    PubMed  CAS  Google Scholar 

  • Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44: 419–428

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    PubMed  CAS  Google Scholar 

  • Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841

    PubMed  CAS  Google Scholar 

  • Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153: 3–11

    PubMed  CAS  Google Scholar 

  • Wasmuth, JJ, Hall LV (1984) Genetic demonstration of mitotic recombination in cultured Chinese hamster cell hybrids. Cell 36: 697–707

    PubMed  CAS  Google Scholar 

  • Weiss EH, Mellor A, Golden L, Fahrner K, Simpson E, Hurst J, Flavell RA (1983) The structure of a mutant H-2 gene suggests that the generation of polymorphism in H-2 genes may occur by gene conversion-like events. Nature 301: 671–674

    PubMed  CAS  Google Scholar 

  • Xiong G, Schorr J, Tjia ST, Doerfler W (1991) Heterologous recombination between Autographa californica nuclear polyhedrosis virus DNA and foreign DNA in non-polyhedrin segments of the viral genome. Virus Res 21: 65–85

    PubMed  CAS  Google Scholar 

  • Yanagi Y, Yoshikai Y, Leggett K, Clark SP, Aleksander I, Mak TW (1984) A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308: 145–149

    PubMed  CAS  Google Scholar 

  • Zock C, Doerfler W (1990) A mitigator sequence in the downstream region of the major late promotor of adenovirus type 12 DNA. EMBO J 9: 1615–1623

    PubMed  CAS  Google Scholar 

  • Zock C, Iselt A, Doerfler W (1993a) A unique mitigator sequence determines the species specificity of the major late promotor in adenovirus type 12 DNA. J Virol 67: 682–693

    CAS  Google Scholar 

  • Zock C, Iselt A, Doerfler W (1993b) Role of the mitigator sequence in the species-specific expression of the major late promotor in adenovirus type 12 DNA. In: Doerfler W, Boehm, P (eds) Virus strategies. Verlag Chemie, Weinheim, pp 305–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fechteler, K., Tatzelt, J., Huppertz, S., Wilgenbus, P., Doerfler, W. (1995). The Mechanism of Adenovirus DNA Integration: Studies in a Cell-Free System. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses II. Current Topics in Microbiology and Immunology, vol 199/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79499-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79499-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79501-5

  • Online ISBN: 978-3-642-79499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics