Skip to main content

Consequences of HMG-Domain Protein Binding to Cisplatin-Modified DNA

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

The HMG domain is a recently discovered motif which occurs in transcription factors and other DNA-binding proteins. The domain, composed of approximately 80 amino acids, was first identified in the abundant nonhistone chromosomal protein HMG1, high mobility group protein 1, so named because of its rapid mobility on Polyacrylamide electrophoresis gels. Some HMG-domain proteins, such as LEF-1 and SRY, contain a single HMG domain, whereas others, including hUBF, have up to five. In binding to DNA, the HMG domain prefers single-stranded or bent double-stranded structures. Proteins containing the domain bend duplex DNA by up to 130° when they bind to it, and HMG1 facilitates the formation of DNA circles as small as 59 bp in length. HMG-domain proteins also bind to the most abundant DNA adducts of the anticancer drug cisplatin, specifically, the 1,2-d(GpG) and 1,2-d(ApG) intrastrand cross-links. These adducts are believed to be responsible for the cytotoxicity of the drug. HMG-domain proteins may affect the antitumor properties of cisplatin, since they block excision repair of the cisplatin-DNA adducts both in human cell extracts and in yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellon SF, Lippard SJ (1990) Bending studies of DNA site-specifically modified by cisplatin, trans-diamminedichloroplatinum(II) and cis-[Pt(NH3)2(N3-cytosine)Cl]+. Biophys Chem 35:179–188

    Article  PubMed  CAS  Google Scholar 

  • Bellon SF, Coleman JH, Lippard SJ (1991) DNA unwinding produced by sitespecific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum (II). Biochemistry 30:8026–8035

    Article  PubMed  CAS  Google Scholar 

  • Billings PC, Davis RJ, Engelsberg BN, Skov KA, Hughes EN (1992) Characterization of high mobility group protein binding to cisplatin-damaged DNA. Biochem Biophys Res Comm 188:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Bissett D, McLaughlin K, Kelland LR, Brown R (1993) Cisplatin-DNA damage recognition proteins in human tumour extracts. Br J Cancer 67:742–748

    Article  PubMed  CAS  Google Scholar 

  • Brown SJ, Kellett PJ, Lippard SJ (1993) Ixr1, a yeast protein that binds to platinated DNA and confers sensitivity to cisplatin. Science 261:603–605

    Article  PubMed  CAS  Google Scholar 

  • Bruhn SL, Toney JH, Lippard SJ (1990) Biological processing of DNA modified by platinum compounds. Prog Inorg Chem 38:477–516

    Article  CAS  Google Scholar 

  • Bruhn SL, Pil PM, Essigmann JM, Housman DE, Lippard SJ (1992) Isolation and characterization of human cDNA clones encoding a high mobility group box protein that recognizes structural distortions to DNA caused by binding of the anticancer agent cisplatin. Proc Natl Acad Sci USA 89:2307–2311

    Article  PubMed  CAS  Google Scholar 

  • Bruhn SL, Housman DE, Lippard SJ (1993) Isolation and characterization of cDNA clones encoding the Drosophila homolog of the HMG-box SSRP family that recognizes specific DNA structures. Nucleic Acids Res 21:1643–1646

    Article  PubMed  CAS  Google Scholar 

  • Bustin M, Lehn DA, Landsman D (1990) Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta 1049:231–243

    PubMed  CAS  Google Scholar 

  • Chao CCK (1991) Potential negative regulation of damage-recognition proteins in cisplatin-resistant HeLa cells in response to DNA damage. Mutat Res 264:59–66

    Article  PubMed  CAS  Google Scholar 

  • Chow CS, Whitehead JP, Lippard SJ (1994) HMG domain proteins induce sharp bends in cisplatin-modified DNA. Biochemistry 33:15124–15130

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Chang E (1988) Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564–567

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli RB, Solomon MJ, Varshavsky A, Lippard SJ (1985) In vivo effects of cis-and trans-diamminedichloroplatinum(II) on SV40 chromosomes: differential repair, DNA-protein cross-linking, and inhibition of replication. Biochemistry 24:7533–7540

    Article  PubMed  CAS  Google Scholar 

  • Denny P, Swift S, Connor F, Ashworth A (1992) An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11:3705–3712

    PubMed  CAS  Google Scholar 

  • Diffley JFX, Stillman B (1992) DNA binding properties of an HMG1-related protein from yeast mitochondria. J Biol Chem 267:3368–3374

    PubMed  CAS  Google Scholar 

  • Donahue BA, Augot M, Bellon SF, Treiber DK, Toney JF, Lippard SJ, Essigmann JM (1990) Characterization of a DNA damage-recognition protein from mammalian cells that binds specifically to intrastrand d(GpG) and d(ApG) DNA adducts of the anticancer drug cisplatin. Biochemistry 29:5872–5880

    Article  PubMed  CAS  Google Scholar 

  • Dooijes D, van de Wetering M, Knippels L, Clevers H (1993) The Schizosaccharomyces pombe mating-type gene mat-Mc encodes a sequence-specific DNA-binding high mobility group box protein. J Biol Chem 268:24813–24817

    PubMed  CAS  Google Scholar 

  • Ferrari S, Harley VR, Pontiggia A, Goodfellow PN, Lovell-Badge R, Bianchi ME (1992) SRY, like HMG1, recognizes sharp angles in DNA. EMBO J 11:4497–4506

    PubMed  CAS  Google Scholar 

  • Fisher RP, Lisowsky T, Parisi MA, Clayton DA (1992) DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 267:3358–3367

    PubMed  CAS  Google Scholar 

  • Giese K, Grosschedl R (1993) LEF-1 contains an activation domain that stimulates transcription only in a specific context of factor-binding sites. EMBO J 12:4667–4676

    PubMed  CAS  Google Scholar 

  • Giese K, Cox J, Grosschedl R (1992) The HMG domain of Lymphoid Enhancer Factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69:185–195

    Article  PubMed  CAS  Google Scholar 

  • Giese K, Pagel J, Grosschedl R (1994) Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 91:3368–3372

    Article  PubMed  CAS  Google Scholar 

  • Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  PubMed  CAS  Google Scholar 

  • Hamaguchi K, Godwin AK, Yakushiji M, O’Dwyer PJ, Ozols RF, Hamilton TC (1993) Cross-resistance to diverse drugs is associated with primary cisplatin resistance in ovarian cancer cell lines. Cancer Res 53:5225–5232

    PubMed  CAS  Google Scholar 

  • Haqq CM, King, CY, Donahoe PK, Weiss MA (1993) SRY recognizes conserved DNA sites in sex-specific promoters. Proc Natl Acad Sci USA 90:1097–1101

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Scovell WM (1991a) cis-Diamminedichloroplatinum (II) modified chromatin and nucleosomal core particle probed with DNAse I. Biochim Biophys Acta 1088:413–418

    PubMed  CAS  Google Scholar 

  • Hayes J, Scovell WM (1991b) cis-Diamminedichloroplatinum (II) modified chromatin and nucleosomal core particle. Biochim Biophys Acta 1089:377–385

    PubMed  CAS  Google Scholar 

  • Hsu T, King DL, LaBonne C, Kafatos FC (1993) A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus. Proc Natl Acad Sci USA 90:6488–6492

    Article  PubMed  CAS  Google Scholar 

  • Huang J-C, Zambie DB, Reardon JT, Lippard SJ, Sancar A (1994) HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin. Proc Natl Acad Sci USA 91:10394–10398

    Article  PubMed  CAS  Google Scholar 

  • Hughes EN, Engelsberg BN, Billings PC (1992) Purification of nuclear proteins that bind to cisplatin damaged DNA: identity with high mobility group proteins 1 and 2. J Biol Chem 267:13520–13527

    PubMed  CAS  Google Scholar 

  • Jantzen HM, Admon A, Bell SP, Tjian R (1990) Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830–836

    Article  PubMed  CAS  Google Scholar 

  • King CY, Weiss MA (1993) The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: A topological mechanism of sequence specificity. Proc Natl Acad Sci USA 90:11990–11994

    Article  PubMed  CAS  Google Scholar 

  • Kohlstaedt LA, Cole RD (1994) Specific interaction between H1 histone and High Mobility Protein HMG1. Biochemistry 33:570–575

    Article  PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–127

    Article  PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kuhn A, Voit R, Stefanovsky V, Evers R, Bianchi M, Grummt I (1994) Functional differences between the two splice variants of the nucleolar transcription factor UBF: the second HMG box determines specificity of DNA binding and transcriptional activity. EMBO J 13:416–424

    PubMed  CAS  Google Scholar 

  • Landsman D, Bustin M (1991) Assessment of the transcriptional activation potential of the HMG chromosomal proteins. Mol Cell Biol 11:4483–4489

    PubMed  CAS  Google Scholar 

  • Landsman D, Bustin M (1993) A signature for the HMG-1 box DNA-binding proteins. Bioessays 15:539–546

    Article  PubMed  CAS  Google Scholar 

  • Lawrence DL, Engelsberg BN, Farid RS, Hughes EN, Billings PC (1993) Localization of the binding region of high mobility group protein 2 to cisplatin damaged DNA. J Biol Chem 268:23940–23945

    PubMed  CAS  Google Scholar 

  • Lippard SJ (1994) Structural and biological consequences of platinum anticancer drug binding to DNA. Proc Robert A Welch Foundation 37th Conf on Chemical Research, 40 years of the DNA double helix, October 1993 Chapt 4, pp 49-60

    Google Scholar 

  • Maeda Y, Hisatake K, Kondo T, Hanada K, Song CZ, Nishimura T, Muramatsu M (1992) Mouse rRNA gene transcription factor mUBF requires both HMG-box 1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J 11:3695–3704

    PubMed  CAS  Google Scholar 

  • Ner SS, Travers AA (1994) HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1. EMBO J 13:1817–1822

    PubMed  CAS  Google Scholar 

  • Ner SS, Travers AA, Churchill MEA (1994) Harnessing the writhe: a role for DNA chaperones in nucleoprotein-complex formation. Trends Biochem Sci 19:185–187

    Article  PubMed  CAS  Google Scholar 

  • Onate SA, Prendergast P, Wagner JP, Nissen M, Reeves R, Pettijohn DE, Edwards DP (1994) The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol Cell Biol 14:3376–3391

    PubMed  CAS  Google Scholar 

  • Pauli TT, Haykinson MJ, Johnson RC (1993) The nonspecific DNA-binding and — bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534

    Article  Google Scholar 

  • Pil PM, Lippard SJ (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256:234–237

    Article  PubMed  CAS  Google Scholar 

  • Pil PM, Chow CS, Lippard SJ (1993) High-mobility-group 1 protein mediates DNA bending as determined by ring closures. Proc Natl Acad Sci USA 90:9465–9469

    Article  PubMed  CAS  Google Scholar 

  • Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG (1993) Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res 21:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Schnapp G, Santori F, Carles C, Riva M, Grummt I (1994) The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA Polymerase I. EMBO J 13:190–199

    PubMed  CAS  Google Scholar 

  • Scovell WM, Muirhead N, Kroos LR (1987) cis-Diamminedichloroplatinum(II) selectively cross-links high mobility group proteins 1 and 2 to DNA in micrococcal nuclease accessible regions of chromatin. Biochem Biophys Res Commun 142:826–835

    Article  PubMed  CAS  Google Scholar 

  • Sheflin LG, Spaulding SW (1989) High Mobility Group protein 1 preferentially conserves torsion in negatively supercoiled DNA. Biochemistry 28:5658–5664

    Article  PubMed  CAS  Google Scholar 

  • Sheflin LG, Fucile NW, Spaulding SW (1993) The specific interactions of HMG1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG1/2 boxes. Biochemistry 32:3238–3248

    Article  PubMed  CAS  Google Scholar 

  • Shirakata M, Huppi K, Usuda S, Okazaki K, Yoshida K, Sakano H (1991) HMG1-related DNA-binding protein isolated with V-(D)-J recombination signal probes. Mol Cell Biol 11:4528–4536

    PubMed  CAS  Google Scholar 

  • Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78:4833–4837

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Dixon GH (1990) High Mobility Group proteins 1 and 2 function as general class II transcription factors. Biochemistry 29:6295–6302

    Article  PubMed  CAS  Google Scholar 

  • Stolzenburg F, Dinkl E, Grummt F (1992) Nucleotide sequence of a mouse cDNA encoding the non-histone chromosomal high mobility group protein-2 (HMG-2). Nucleic Acids Res 20:4927

    Article  PubMed  CAS  Google Scholar 

  • Stros M, Stokrova J, Thomas JO (1994) DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res 22:1044–1051

    Article  PubMed  CAS  Google Scholar 

  • Sundquist WI, Lippard SJ, Stollar BD (1986) Binding of cis-and trans-diamminedichloroplatinum (II) to deoxyribonucleic acid exposes nucleosides as measured immunochemically with anti-nucleoside antibodies. Biochemistry 25:1520–1524

    Article  PubMed  CAS  Google Scholar 

  • Szymkowski DE, Yarema K, Essigmann JM, Lippard SJ, Wood RD (1992) An intrastrand d(GpG) platinum crosslink in duplex M13 DNA is refractory to repair by human cell extracts. Proc Natl Acad Sci USA 89:10772–10776

    Article  PubMed  CAS  Google Scholar 

  • Toney JH, Donahue BA, Kellett PJ, Bruhn SL, Essigmann JM, Lippard SJ (1989) Isolation of cDNAs encoding a human protein that binds selectively to DNA modified by the anticancer drug cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 86:8328–8332

    Article  PubMed  CAS  Google Scholar 

  • Travis A, Amsterdam A, Belanger C, Grosschedl R (1991) LEF-1, a gene encoding a lymphoid-specific with protein, an HMG domain, regulates T-cell receptor α enhancer function. Genes Dev 5:880–894

    Article  PubMed  CAS  Google Scholar 

  • Treiber DK, Zhai X, Jantzen HM, Essigmann JM (1994) Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Proc Natl Acad Sci USA 91:5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Tremethick DJ, Molloy PL (1988) Effects of high mobility group proteins 1 and 2 on initiation and elongation of specific transcription by RNA Polymerase II in vitro. Nucleic Acids Res 16:11107–11123

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M, Clevers H (1992) Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. EMBO J 11:3039–3044

    PubMed  Google Scholar 

  • van de Wetering M, Oosterwegel M, van Norren K, Clevers H (1993) Sox4, an Srylike HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12:3847–3854

    PubMed  Google Scholar 

  • Waga S, Mizuno S, Yoshida M (1989) Nonhistone proteins HMG1 and HMG2 suppress the nucleosome assembly at physiological ionic strength. Biochim Biophys Acta 1007:209–214

    PubMed  CAS  Google Scholar 

  • Wang L, Precht P, Balakir R, Horton WE Jr (1993) Rat and chick cDNA clones encoding HMG-like proteins. Nucleic Acids Res 21:1493

    Article  PubMed  CAS  Google Scholar 

  • Watt F, Molloy PL (1988) High mobility group proteins 1 and 2 stimulate binding of a specific transcription factor to the adenovirus major late promoter. Nucleic Acids Res 16:1471–1486

    Article  PubMed  CAS  Google Scholar 

  • Weir HM, Kraulis PJ, Hill CS, Raine ARC, Laue ED, Thomas JO (1993) Structure of the HMG box motif in the B-domain of HMG1. EMBO J 12:1311–1319

    PubMed  CAS  Google Scholar 

  • Wu HM, Crothers DM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308:509–513

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McA’Nulty, M.M., Lippard, S.J. (1995). Consequences of HMG-Domain Protein Binding to Cisplatin-Modified DNA. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics