Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 197))

Abstract

Maize transposons were the first plant genes known to undergo reversible heritable inactivation. Early in the study of the Suppressor-mutator (Spm) trans-posable element McClintock recognized that certain isolates of the element either cycled between inactive and active phases during development or underwent an inactivation event of longer duration and sufficient stability to be heritable, but which was nonetheless occasionally reversed (McClintock 1957, 1958). In subsequent studies, McClintock developed a deeper understanding of the ways in which the Spm element alternated between active and inactive phases (McClintock 1959, 1961, 1962, 1971). She later reported that theActivator element is also subject to a similar type of reversible inactivation, although the she did not study the Activator element’s inactivation mechanism in as great detail as that of Spm (McClintock 1964, 1965a,b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banks JA, Fedoroff N (1989) Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Dev Genet 10: 425–437

    Article  CAS  Google Scholar 

  • Banks JA, Masson P, Fedoroff N (1988) Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev 2: 1364–1380

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (1987) Covalent DNA modification and the regulation of Mutator element transposition in maize. Mol Gen Genet. 208: 45–51

    Article  CAS  Google Scholar 

  • Berg D, Howe M (1989) Mobile DNA. American Society for Microbiology, Washington DC

    Google Scholar 

  • Bianchi A, Salamini F, Restaino F (1969) Concomitant occurrence of different controlling elements. Maize Genet Coop News Lett 43: 91

    Google Scholar 

  • Chandler V, Walbot V (1986) DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci USA 83: 1767–1771

    Article  PubMed  CAS  Google Scholar 

  • Cook D, Fedoroff N (1992) Regulation of Spm promoter activity by the Spm-encoded TnpA gene product and DNA methylation. Maize Genet Coop Newslet 66: 11–12

    Google Scholar 

  • Cone CC, Schmidt RJ, Burr B and Burr FA (1988) Advantages and limitations of using Spm as a transposon tag. In: Nelson O (ed) Plant transposable elements. Plenum, New York pp 149–159

    Google Scholar 

  • Fedoroff NV (1983) Controlling elements in maize. In: Shapiro J (ed) Mobile genetic elements. Academic, New York, pp 1–63

    Google Scholar 

  • Fedoroff NV (1989a) Maize transposable elements. In: Berg D, Howe M (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 375–411

    Google Scholar 

  • Fedoroff NV (1989b) The heritable activation of cryptic Suppressor-mutator elements by an active element. Genetics 121: 591–608

    PubMed  CAS  Google Scholar 

  • Fedoroff NV, Banks JA (1988) Is the Suppressor-mutator element controlled by a basic development regulatory mechanism? Genetics 120: 559–577

    PubMed  CAS  Google Scholar 

  • Fedoroff NV, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 243–251

    Article  Google Scholar 

  • Fedoroff NV, Masson P, Banks J, Kingsbury J (1988) Positive and negative regulation of the Suppressormutator element. In: Nelson O (ed) Plant transposable elements. Plenum, New York, pp 1–15

    Google Scholar 

  • Fowler RB, Peterson PA (1978) An altered state of a specific En regulatory element induced in a maize tiller. Genetics 90: 761–782

    PubMed  CAS  Google Scholar 

  • Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J 9: 4037–4044

    PubMed  CAS  Google Scholar 

  • Gierl A, Lutticke S, Saedler H (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J 7: 4045–4053

    PubMed  CAS  Google Scholar 

  • Grant SR. Gierl A, Saedler H (1990) En/Spm encoded tnpA protein requires a specific target sequence for suppression. EMBO J 9: 2029–2035

    Google Scholar 

  • Kolosha V, Fedoroff N (1992) Transcriptional reactivation of inactive Spm elements in the presence of Spm-w elements. Maize Genet Coop Newslett 66: 9–11

    Google Scholar 

  • Masson P, Fedoroff N (1989) Mobility of the maize Suppressor-mutator element in transgenic tobacco cells. Proc Acad Sci USA 86: 2219–2223

    Article  CAS  Google Scholar 

  • Masson P, Surosky R, Kingsbury J, Fedoroff NV (1987) Genetic and molecular analysis of the Spmdependent a-m2 alleles of the maize a locus. Genetics 117: 117–137

    PubMed  CAS  Google Scholar 

  • Masson P, Rutherford G, Banks JA, Fedoroff NV (1989) Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58: 755–765

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Strem M, Fedoroff N (1991) The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3: 73–85

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1945) Cytogenetic studies of maize and Neurospora. Carnegie Inst Wash Yrbk 44: 108–112

    Google Scholar 

  • McClintock B (1946) Maize genetics. Carnegie Inst Wash Yrbk 45: 176–186

    CAS  Google Scholar 

  • McClintock B (1953) Mutation in maize. Carnegie Inst Wash Yrbk 52: 227–237

    Google Scholar 

  • McClintock B (1954) Mutations in maize and chromosomal abberrations in Neurospora. Carnegie Inst Wash Yrbk 53: 254–260

    Google Scholar 

  • McClintock B (1955) Controlled mutation in maize. Carnegie Inst Wash Yrbk 54: 245–255

    Google Scholar 

  • McClintock B (1957) Genetic and cytological studies of maize. Carnegie Inst Wash Yrbk 56: 393–401

    Google Scholar 

  • McClintock B (1958) The suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yrbk 57: 415–452

    Google Scholar 

  • McClintock B (1959) Genetic and cytological studies of maize. Carnegie Inst Wash Yrbk 58: 415–429

    Google Scholar 

  • McClintock B (1961) Further studies of the suppressor-mutator system of control of gene action in maize. Carnegie Inst Wash Yrbk 60: 469–476

    Google Scholar 

  • McClintock B (1962) Topographical relations between elements of control systems in maize. Carnegie Inst Wash Yrbk 61: 448–461

    Google Scholar 

  • McClintock B (1963) Further studies of gene-control systems in maize. Carnegie Inst Wash Yrbk 62: 486–493

    Google Scholar 

  • McClintock B (1964) Aspects of gene regulation in maize. Carnegie Inst Wash Yrbk 63: 592–602

    Google Scholar 

  • McClintock B (1965a) Components of action of the regulators Spm and Ac. Carnegie Inst Wash Yrbk 64: 527–534

    Google Scholar 

  • McClintock B (1965b) The control of gene action in maize. Brookhaven Symp Biol 18: 162–184

    Google Scholar 

  • McClintock B (1967) Regulation of pattern of gene expression by controlling elements in maize. Carnegie Inst Wash Yrbk 65: 568–578

    Google Scholar 

  • McClintock B (1971) The contribution of one component of a control system to versatility of gene expression. Carnegie Inst Wash Yrbk 70: 5–17

    Google Scholar 

  • McClintock B (1978) Mechanisms that rapidly reorganize the genome. Stadler Genet Symp 10: 25–48

    Google Scholar 

  • Menssen A, Hohmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A (1990). The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9: 3051–3057

    PubMed  CAS  Google Scholar 

  • Neuffer MG (1966) Stability of the suppressor element in two mutator systems at the A1 locus in maize. Genetics 53: 541–549

    PubMed  CAS  Google Scholar 

  • Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the En/Spm transposable element system of Zea mays. EMBO J 5: 835–841

    PubMed  CAS  Google Scholar 

  • Peschke VM, Phillips RL (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81: 90–97

    Article  Google Scholar 

  • Peschke VM, Phillips RL, Gengenbach BG (1987) Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Peterson PA (1966) Phase variation of regulatory elements in maize. Genetics 54: 249–266

    PubMed  CAS  Google Scholar 

  • Raina R, Cook D, Fedoroff N (1993) The maize Spm transposable element has an enhancer-insensitive promoter. Proc Natl Acad Sci USA 90: 6355–6359

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW, Raboy V, Fedoroff NV, Nelson OE (1985) Deletions within a defective Suppresso-rmutator element in maize affect the frequency and developmental timing of its excision from the bronze locus. Proc Natl Acad Sci USA 82: 4783–4787

    Article  PubMed  CAS  Google Scholar 

  • Schiefelbein JW, Raboy V, Kim H-Y, Nelson OE (1988) Molecular characterization of Suppressor-mutator (Spm Hnduced mutations at the bornze-1 locus. In: Nelson O (ed) Plant transposable elements. Plenum, New York, pp 261–278

    Google Scholar 

  • Schläppi M, Fedoroff N (1992) Promotion of early Spm transposition and repression of Spm transcription by TnpA in transgenic tobacco. Maize Genet Coop Newslett 66: 12–14

    Google Scholar 

  • Schläppi M, Smith D, Fedoroff N (1993) TnpA trans-activates methylated maize Suppressor-mutator transposable elements in transgenic tobacco. Genetics 133: 1009–1021

    PubMed  Google Scholar 

  • Schläppi M, Raina R, Fedoroff N (1994) Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77: 427–437

    Article  PubMed  Google Scholar 

  • Schwarz-Sommer Z, Gierl A, Berndtgen R, Saedler H (1985) Sequence comparison of ‘states’ of a1-m1 suggests a model of Spm (En) action. EMBO J 4: 2439–2443

    PubMed  CAS  Google Scholar 

  • Trentmann SM, Saedler H, Gierl A (1993) The transposable element En/Spm encoded TNPA protein contains a DNA binding and dimerization domain. Mol Gen Genet

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fedoroff, N.V. (1995). DNA Methylation and Activity of the Maize Spm Transposable Element. In: Meyer, P. (eds) Gene Silencing in Higher Plants and Related Phenomena in Other Eukaryotes. Current Topics in Microbiology and Immunology, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79145-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79145-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79147-5

  • Online ISBN: 978-3-642-79145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics