Skip to main content

Diversity of and interactions among sulphur bacteria in microbial mats

  • Conference paper
Microbial Mats

Part of the book series: NATO ASI Series ((ASIG,volume 35))

Abstract

Microbial mats are found along the outflow of continental thermal springs, on marine littoral sediments, in thalassic and athalassic (inland) hypersaline ponds and lakes, and in the deep-sea along hydrothermal vents. Hydrothermal vent microbial mats consist of chemotrophic sulphur bacteria thriving in the dark on sulphide which is mainly supplied by geochemical processes. However, it has been shown that sulphate reduction in these systems does occur up to 110 °C (Jørgensen et al. 1992), thus indicating that complete sulphur cycling also takes place. Microbial mats that are exposed to sunlight often comprise dense populations of oxygenic and anoxygenic phototrophic microorganisms together with chemoorganotrophs and chemolithotrophs. In habitats where the sulphur cycling is not a dominant process, microbial mats often originate from an association of cyanobacteria with anoxygenic filamentous phototrophic bacteria. For example, in thermal mats, it was shown that the Chloroflexus-like filamentous bacteria incorporated glycolate which was a major excretion product of the cyanobacteria found in the same mats (Bateson and Ward 1988). This commensalistic relationship is a nice example of a positive interaction of two organisms coexisting in the same environment. In other microbial mat environments, sulphide oxidation plays a predominant role. In the absence of geochemically formed sulphide, sulphide formation results mainly from the activities of sulphur and sulphate-reducing bacteria. In this paper, we discuss the biodiversity of sulphur bacteria and their ecological interactions in microbial mats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bateson MM, Ward DM (1988) Photoexcretion and fate of glycolate in a hot spring cyanobacterial mat. Appl Environ Microbiol 54: 1738–1743

    Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1988) Characterization of Chromatium salexigens sp nov, a halophilic Chromatiaceae isolated from Mediterranean Salinas. System Appl Microbiol 10: 284–292

    Google Scholar 

  • Caumette P (1989) Ecology and general physiology of anoxygenic phototrophic bacteria in benthic environments In: Cohen Y, Rosenberg E (eds) Microbial Mats; Physiological Ecology of Benthic Microbial Communities ASM, Washington DC, pp 283–304

    Google Scholar 

  • Caumette P, Baulaigue R, Matheron R (1991a) Thiocapsa halophila sp nov, a new halophilic phototrophic purple sulfur baeterium.Arch Microbiol 155: 170–176

    Article  Google Scholar 

  • Caumette P, Cohen Y, Matheron R (1991b) Desulfovibrio halophilus sp nov, a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst Appl Microbiol 13: 33–38

    Google Scholar 

  • Caumette P, Matheron R, Raymond N, Relexans, J-C (in press) Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiol Ecol

    Google Scholar 

  • Cohen Y, De Jonge I, Kuenen JG (1979) Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture. Arch Microbiol 122: 189–194

    Article  Google Scholar 

  • D’Amelio ED, Cohen Y, Des Marais DJ (1987) Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline microbial mats. Arch Microbiol 147: 213–220

    Article  Google Scholar 

  • De Wit R (1989) Interactions between phototrophic bacteria in marine sediments. PhD-thesis, University of Groningen

    Google Scholar 

  • De Wit R, Van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45, 117–126

    Article  Google Scholar 

  • De Wit R, Jonkers HM, Van den Ende FP, Van Gemerden H (1989) In situ fluctuations of oxygen and sulphide in marine microbial sediment ecosystems. Neth J of Sea Res 23: 271–281

    Article  Google Scholar 

  • De Wit R, Van Gemerden H (1990a) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76

    Article  Google Scholar 

  • De Wit R, Van Gemerden H (1990b) Growth and metabolism of the purple sulfur bacterium Thiocapsa roseopersicina under combined light/dark and oxic/anoxic regimens. Arch Microbiol 154: 459–464

    Article  Google Scholar 

  • De Wit R, Grimait JO (1992) Microbial ecosystems in Spanish coastal Salinas; an ecological and geochemical study of biomarkers. Limnetica 8: 205–212

    Google Scholar 

  • Durand P, Reysenbach A-L, Prieur D, Pace N (1993) Isolation and characterization of Thiobacillus hydrothermalis sp nov, a meesophilic obligately chemolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159: 39–44

    Article  Google Scholar 

  • Elsgaard L, Guezennec J, Benbouzid-Rollet N, Prieur D (1991) Fatty acid composition of sulfate-reducing bacteria isolated from deep-sea hydrothermal vents (13°N, East Pacific Rise) Kieler Meeresforsch, Sonderh 8, 182–187

    Google Scholar 

  • Garcia D, Parot P, Vermeglio A, Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur bacterium Chromatium tepidum. Biochim Biophys Acta 850: 390–395

    Article  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM, Castenholz RW (1987) Obligate phototrophic Chloroflexus: Primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87

    Article  Google Scholar 

  • Gottschal JC, De Vries S, Kuenen JG (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch Microbiol 121: 241–249

    Article  Google Scholar 

  • Gundersen JK, Jørgensen BB, Larsen E, Jannasch HW (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454–455

    Article  Google Scholar 

  • Heyer H, Krumbein WE (1991) Excretion and fermentation products in dark and anaerobically incubated cyanobacteria. Arch Microbiol 155: 284–287

    Article  Google Scholar 

  • Hof T (1935) Investigations concerning bacterial life in strong brines. Extrait du Recueil des Traveaux Botaniques Néerlandais 32: 92–173

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulphur cycle with special reference to the anoxic-oxic interface. Phil Trans R Soc London B298: 543–561

    Google Scholar 

  • Jørgensen BB, Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microbiol Ecol 16: 133–147

    Article  Google Scholar 

  • Jørgensen BB, Isaksen MF, Jannasch HW (1992) Bacterial sulphate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258: 1756–1757

    Article  Google Scholar 

  • Kuenen JG, Robertson LA, Van Gemerden H (1985) Microbial interactions among aerobic and anaerobic sulfur-oxidizing bacteria. In: Marshall KC (ed) Advances in Microbial Ecol Vol 8 Plenum Press, New York, pp 1–59

    Google Scholar 

  • Larsen M, Mack EE, Pierson BK (1991) Mesophilic Chloroflexus-like organisms from marine and hypersaline environments. Abstr VII Int Symp Photosynthetic Prokaryotes, Amherst, USA, pp 169

    Google Scholar 

  • Leadbetter ER (1974) Beggiatoaceae. In: Buchanan RE and Gibbons NE (eds) Bergey’s Manual of determinative bacteriology, 8th ed The Williams & Wilkins Co, Baltimore, pp 112–116

    Google Scholar 

  • Mack EE, Pierson BK (1988) Preliminary characterization of a temperate marine member of the Chloroflexaceae. In: Olsen JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green Photosynthetic Bacteria. Plenum Publ Corp, New York, pp 237–241

    Chapter  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315

    Article  Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp nov, a thermophilic photosynthetic bacterium of the family of the Chromatiaceae. Int J of Syst Bact 36: 222–227

    Article  Google Scholar 

  • Mezzino MJ, Strohl WR, Larkin JM (1984) Characterization of Beggiatoa alba. Arch Microbiol 137: 139–144

    Article  Google Scholar 

  • Nelson DC, Wirson CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp abundant at hydrothermal vents in the Guaymass basin. Appl Environ Microbiol 55: 2909–2917

    Google Scholar 

  • Nicholson JAM, Stolz JF, Pierson BK (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45: 343–364

    Article  Google Scholar 

  • Oren A, Kessel M, Stackebrandt E (1989) Ectothiorhodospira marismortui, sp nov, an obligately anaerobic, moderately halophilic purple sulphur bacterium from a hypersaline spring on the shore of the Dead Sea. Arch Microbiol 151: 524–529

    Article  Google Scholar 

  • Overman J, Pfennig N (1992) Continuous chemotrophic growth and respiration of Chromatiaceae species at low oxygen concentrations. Arch Microbiol 158: 59–67

    Article  Google Scholar 

  • Overmann J, Fischer U, Pfennig N (1992) A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen nov and sp nov. Arch Microbiol 157: 329–335

    Article  Google Scholar 

  • Pierson BK, Sands VM, Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered microbial mat. Appl Environ Microbiol 56: 2327–2340

    Google Scholar 

  • Thomas JC (1984) Formations benthiques à Cyanobacteries des salins de Santa Pola (Espagne): composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements. Rev Invest Geol 38–39: 139–158

    Google Scholar 

  • Van den Ende F, Van Gemerden H (1993) Sulfide oxidation under oxygen limitation by a Thiobacillus thioparus isolated from a marine microbial mat. FEMS Microbiol Ecol 13: 69–78

    Article  Google Scholar 

  • Van Gemerden H (1968) On the ATP generation of Chromatium in darkness. Arch Mikrobiol 64: 118–124

    Article  Google Scholar 

  • Visscher FT, Prins RA, Van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Ecol 86: 283–294

    Article  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp nov. Arch Microbiol 156: 81–90

    Article  Google Scholar 

  • Welsh DT, Herbert RA (1993) Identification of organic solutes accumulated by purple and green sulphur bacteria during osmotic stress using natural abundance 13C nuclear magnetic resonance spectroscopy. FEMS Microbiol Ecol 13: 145–150

    Article  Google Scholar 

  • Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp nov, a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156: 277–280

    Article  Google Scholar 

  • Wood AP, Burke CB, Knott B, Kelly DP (1991) Chemolithotrophic sulfur bacteria in sediments, mats, and stromatiles of Western Australian saline lakes. Geomicrobiol J 9: 41–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Wit, R., Caumette, P. (1994). Diversity of and interactions among sulphur bacteria in microbial mats. In: Stal, L.J., Caumette, P. (eds) Microbial Mats. NATO ASI Series, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78991-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78991-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78993-9

  • Online ISBN: 978-3-642-78991-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics