Skip to main content

Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches — relationship between biodiversity and community structure

  • Conference paper
Microbial Mats

Part of the book series: NATO ASI Series ((ASIG,volume 35))

Abstract

We have conducted long-term studies of microbial mats of hot springs as model systems for investigating composition and structure of natural microbial communities and as modern analogs of stromatolites (Ward et al. 1984, 1987, 1989b). As recently as the last symposium on microbial mats our knowledge of the biodiversity within these communities was based solely on microbial species cultivated from such mat systems. The view has changed dramatically in the intervening years, because of the application of culture-independent techniques to recover and probe ribosomal RNAs (rRNAs) as biomarkers representing individual mat community members (Ward et al. 1992; Weller et al. 1992 and references cited therein), and more recently because of the renewed attempt to cultivate more relevant species. Here, we summarize what is currently known. The evidence suggests that the molecular methods we are using (Ward et al. 1992) may still not permit a complete understanding of the true complexity of the community. However, the approach does provide insight into understanding the basis behind this large biodiversity and into how more relevant species can be cultivated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. van Stockum and Zoon N.V., Den Haag, The Netherlands

    Google Scholar 

  • Bateson MM, Thibault K, Ward DM (1990) Comparative analysis of partial 16S ribosomal RNA sequences of Thermus species. System Appl Microbiol 13:8–13

    Google Scholar 

  • Bateson MM, Wiegel J, Ward DM (1989) Comparative analysis of 16S ribosomal RNA sequences of thermophilic fermentative bacteria isolated from hot spring cyanobacterial mats. System Appl Microbiol 12:1–7

    Article  Google Scholar 

  • Bauld J, Brock TD (1973) Ecological studies of Chloroflexis, a gliding photosynthetic bacterium. Arch Mikrobiol 92: 267–284

    Article  Google Scholar 

  • Ben-Bassat A, Zeikus JG (1981) Thermobacteroides acetoethylicus gen. nov. and spec, nov., a new chemoorganotrophic anaerobic, thermophilic bacterium. Arch Microbiol 128:365–370

    Article  Google Scholar 

  • Brock TD (1967) Micro-organisms adapted to high temperatures. Nature 214:882–885

    Article  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297

    Google Scholar 

  • Castenholz RW (1973) Ecology of blue-green algae in hot springs. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford/London, pp 379–414

    Google Scholar 

  • Castenholz RW (1981) Isolation and cultivation of thermophilic cyanobacteria. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The Prokaryotes. Springer-Verlag, Berlin/Heidelberg/New York pp 236–246

    Google Scholar 

  • Doemel WN, Brock TD (1977) Structure, growth, and decomposition of laminated algal-bacterial mats in alkaline hot springs. Appl Environ Microbiol 34:433–452

    Google Scholar 

  • Giovannoni SJ, Schabtach E, Castenholz RW (1987) Isosphaera pallida, gen. and comb, nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 147:276–284

    Article  Google Scholar 

  • Jackson TJ, Ramaley RF, Meinschein WG (1973) Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J System Bacteriol 23:28–36

    Article  Google Scholar 

  • Kallas T, Castenholz RW (1982) Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol 149:229–236

    Google Scholar 

  • Loginova LG, Egorova LA (1975) An obligately thermophilic bacterium Thermus ruber from hot springs in Kamchatka. Microbiology 44:593–597

    Google Scholar 

  • Madigan MT, Brock TD (1977). Adaptation by hot spring phototrophs to reduced light intensities. Arch Microbiol 113:111–120

    Article  Google Scholar 

  • Merkel GJ, Underwood WH, Perry JJ (1978) Isolation of thermophilic bacteria capable of growth solely in long-chain hydrocarbons. FEMS Microbiol Lett 3:81–83

    Article  Google Scholar 

  • Odum EP (1983) Basic ecology. Saunders College Publishing, Fort Worth, Texas

    Google Scholar 

  • Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbial Ecol 9:1–55

    Google Scholar 

  • Peary JA, Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature 202:720–721

    Article  Google Scholar 

  • Pierson BK, Castenholz RW (1974) A prototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24

    Article  Google Scholar 

  • Ramaley RF, Bitzinger K (1975) Types and distribution of obligate thermophilic bacteria in man-made and natural thermal gradients. Appl Microbiol 30:152–155

    Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats (submitted)

    Google Scholar 

  • Sandbeck KA, Ward DM (1982) Temperature adaptations in the terminal processes of anaerobic decomposition of Yellowstone and Icelandic hot spring microbial mats. Appl Environ Microbiol 44: 844–851

    Google Scholar 

  • Schink B, Zeikus JG (1983) Clostridium thermosutfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129:1149–1158

    Google Scholar 

  • Sheridan RP (1976) Sun-shade ecotypes of a bluegreen alga in a hot spring. J Phycol 12:279–285.

    Google Scholar 

  • Sheridan RP (1979) Seasonal variation in sun-shade ecotypes of Plectonema notatum (Cyanophyta). J Phycol 15:223–226

    Article  Google Scholar 

  • Ward DM, Beck E, Revsbech NP, Sandbeck KA, Winfrey MR (1984) Decomposition of hot spring microbial mats. In: Cohen Y, Castenholz RW, Halvorson HO (eds) Microbial mats: Stromatolites. A.R. Liss, Inc., New York pp 191–214

    Google Scholar 

  • Ward DM, Tayne TA, Anderson KL, Bateson MM (1987) Community structure and interactions among community members in hot spring cyanobacterial mats. Symp Soc Gen Microbiol 41:179–210

    Google Scholar 

  • Ward, DM, Shiea J, Zeng YB, Dobson G, Brassell S, Eglinton G (1989a) Lipid biochemical markers and the composition of microbial mats. In: Cohen Y, Rosenburg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities. Am Soc Microbiol, Wash DC pp 439–454

    Google Scholar 

  • Ward DM, Weiler R, Shiea J, Castenholz RW, Cohen Y (1989b) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenburg E (eds) Microbial Mats: Physiological ecology of benthic microbial communities. Am Soc Microbiol, Wash DC pp 3–15

    Google Scholar 

  • Ward DM, Weiler R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63–65

    Article  Google Scholar 

  • Ward DM, Bateson MM, Weller R, Ruff AL (1992) Ribosomal RNA analysis of microorganisms as they occur in nature. Adv Microbial Ecology 12:219–286

    Google Scholar 

  • Waterbury, JB, Rippka R (1989) Subsection I. Order Chroococcales. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol. 3. Williams and Wilkins, Baltimore, MD, pp 1728–1746

    Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK, Kopczinski ED, Ward DM (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58:3964–3969

    Google Scholar 

  • Wiegel J, Ljungdahl LG (1981) Thermoanaerobium ethanolicus gen. nov., spec, nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348

    Article  Google Scholar 

  • Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810

    Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    Article  Google Scholar 

  • Zarilla KA, Perry JJ (1984) Thermoleophilum album gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137:286–290

    Article  Google Scholar 

  • Zarilla KA, Perry JJ (1986) Deoxyribonucleic acid homology and other comparisons among obligately thermophilic hydrocarbonoclastic bacteria, with a proposal for Thermoleophilum minutum sp. nov. Int J System Bacteriol 36:13–16

    Article  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    Google Scholar 

  • Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48

    Article  Google Scholar 

  • Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440

    Google Scholar 

  • Zeikus, JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. 129:1159–1169

    Google Scholar 

  • Zeng YB, Ward DM, Brassell S, Eglinton G (1992a) Biogeochemistry of hot spring environments. 2. Lipid compositions of Yellowstone (Wyoming, USA) cyanobacterial and Chloroflexus mats. Chem Geol 95:327–345

    Article  Google Scholar 

  • Zeng YB, Ward DM, Brassell S, Eglinton G (1992b) Biogeochemistry of hot spring environments. 3. Apolar and polar lipids in the biologically active layers of a cyanobacterial mat. Chem Geol 95:347–360

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ward, D.M., Ferris, M.J., Nold, S.C., Bateson, M.M., Kopczynski, E.D., Ruff-Roberts, A.L. (1994). Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches — relationship between biodiversity and community structure. In: Stal, L.J., Caumette, P. (eds) Microbial Mats. NATO ASI Series, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78991-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78991-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78993-9

  • Online ISBN: 978-3-642-78991-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics