Skip to main content

Röntgenstrahlen in der Chemie

  • Chapter
Forschung mit Röntgenstrahlen
  • 125 Accesses

Zusammenfassung

Kaum eine andere einzelne Methode hat mehr zum Verständnis des räumlichen Aufbaus kristalliner Materie beigetragen wie die Röntgen-beugung. So lieferte die Röntgenstrukturanalyse an Einkristallen die sichersten, genauesten und umfangreichsten Daten chemischer Strukturen. Aus diesen Daten werden Größen wie die Abstände und Winkel zwischen Atomen in Molekülen und Kristallen, oder die Konfiguration und Konformation von Molekülen erhalten. Gleichzeitig liefern diese Daten die Basis für die Rechnungen der theoretischen Chemiker, die diese der Molekülmechanik und -dynamik zugrunde legen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bijvoet JM, Peerdeman AF, Van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271–272.

    Article  CAS  Google Scholar 

  • Bragg WH, Bragg WL (1915) Seven papers by WHB and WLB from the period 1912/14 were reprinted in German translation. Z Artorg Allgem Chem 90:153–296.

    CAS  Google Scholar 

  • Bragg WL (1913) The structure of some crystals as indicated by their diffraction of x-rays. Proc Roy Soc A 89:248–277.

    Article  CAS  Google Scholar 

  • Brill R (1967) Determination of electron distribution in crystals by means of X-rays. Solid State Phys 20:1–35.

    Article  Google Scholar 

  • Coppens P, Hall MB (eds) (1982) Electron distribution and the chemical bond. Plenum, New York.

    Google Scholar 

  • Crowfoot D, Bunn CW, Rogers-Low BW, Turner-Jones A (1949) The chemistry of penicillin. Princeton University Press, Princeton, pp 310–367.

    Google Scholar 

  • Ewald PP (ed) (1962) Fifty years of x-ray diffraction. NVA Oostholk’s uitgeversmaatschappij, Utrecht.

    Google Scholar 

  • Friedrich W, Knipping P, Laue M (1912) Interferenz-Erscheinungen bei Röntgenstrahlen. Bayr Akad Wiss 303:322.

    Google Scholar 

  • Fuess H, Bats JW, Cruickshank DWJ, Eisenstein M (1985) Comparison of theoretical and experimental deformation densities in S-O bonds. Angew Chem Int Ed Eng 24:509–510.

    Article  Google Scholar 

  • Goldschmidt VM (1926) Geochemische Verteihungsgesetze der Elemente, Bd VIII: Gesetze der Kristallochemie. Skrifter Norske Videnskaps-Akademie, Oslo.

    Google Scholar 

  • Guinier A, Fournet G (1955) Sinall angle scattering of X-rays. Wiley, New York.

    Google Scholar 

  • Heilbronner E, Dunitz JD (1993) Reflections on symmetry in chemistry and elsewhere. Helvetica Chimica Acta, Basel; VCH, Weinheim.

    Google Scholar 

  • Hildebrandt G (1993) The discovery of the diffraction of x-rays in crystals — A historical review, Cryst Res Technol 28:747–766.

    Article  CAS  Google Scholar 

  • Kräfschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–358.

    Article  Google Scholar 

  • Kratky O, Lagger P (1987) X-ray small angle scattering. Encyclopedia of physical science and technology. Academic Press, London, pp 693–742.

    Google Scholar 

  • Lehn JM (1988) Supramolekulare Chemie-Moleküle, Übermoleküle und molekulare Funktionseinheiten (Nobel-Vortrag). Angew Chem 100:91–116.

    Article  CAS  Google Scholar 

  • Liebau F (1985) Structural chemistry of silicates — (Structure bonding and classification). Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Löchner U, Pennartz PU, Miehe G, Fuess H (1993) Synchrotron powder diffractometry at Hasylab (Doris) reviewed. Z Kristallogr 204:1–41.

    Article  Google Scholar 

  • Luger P, Andre C, Rudert R, Zobel D, Knöchel A, Krause A (1992) X-ray structure of 18-crown-6-KClO4 at room temperature and 20K. Acta Cryst B 48:33–37.

    Article  Google Scholar 

  • Nockolds CK, Ramaseshan S, Waters TNM, Waters JM, Hodgkin DC (1967) Structure of monocarboxylic acid derivative of vitamin B12. Nature 214:129–133.

    Article  PubMed  CAS  Google Scholar 

  • Pauling L (1962) Die Natur der chemischen Bindung. Verlag Chemie, Weinheim.

    Google Scholar 

  • Penrose R (1979) Pentaplexity. A class of non periodic tilings of the plane. Math Intelligencer 2:32–37.

    Article  Google Scholar 

  • Reiser HS, Rooksby HP, Wilson AJC (1955) The powder and fibre methods in polymer and biological research. X-Ray Diffraction Ch 26:533.

    Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71.

    Article  CAS  Google Scholar 

  • Roth G (1993) Kristallstrukturen und Kristallchemie van der Waals-gebundener Fullerene. Habilitationsschrift, Universität Marburg.

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767.

    Article  Google Scholar 

  • Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational and no translational symmetry. Phys Rev Lett 53:1951–1953.

    Article  CAS  Google Scholar 

  • Steinborn T, Miehe G, Wiesner J et al. (1994) Twinning of YBa2Cu3O7 thin films on different substrates and modification by irradiation. Physica C 220:219–226.

    Article  CAS  Google Scholar 

  • Steurer W (1990) The structure of quasicrystals. Z Kristallogr 190:179–234.

    Article  CAS  Google Scholar 

  • Vogel W, Höland W (1987) The development of bioglass ceramics for medical applications. Angew Chem Int Ed Engl 26:527–544.

    Article  Google Scholar 

  • Weiss A, Witte H (1983) Kristallstruktur und chemische Bindung. Verlag Chemie, Weinheim.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fueß, H. (1995). Röntgenstrahlen in der Chemie. In: Heuck, F.H.W., Macherauch, E. (eds) Forschung mit Röntgenstrahlen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78841-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78841-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78842-0

  • Online ISBN: 978-3-642-78841-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics