Skip to main content

The Emergence of Theoretical Physics in the Second Half of the Nineteenth Century

  • Conference paper
Natural Sciences and Human Thought

Abstract

The relationship between natural sciences and human thought has long been at the centre of philosophical debate and has of course been the subject of a variety of interpretations. Beginning in the middle of last century developments in scientific disciplines accelerated the dissolution of the idealist and positivist synthesis and opened the way for a (partially) new role for philosophy: the critical analysis of the results and the methodologies of science. In this century neo-Kantian discussions about the conditions determining the possibility of scientific knowledge, the neopositivist analysis of scientific theories, phenomenological attempts to achieve a closer grasp of reality, sociological emphasis on the role of shared values, and linguistic explanations have shared the stage to various degrees. In addition, far-reaching criticism of the general scientific approach to knowledge and of its technological implications has stressed the limits not only of the scientific concept of truth but also, and more radically, the possibility of the subject’s access to “rational” knowledge free of historically determined values, interests, emotions, and feelings. From this point of view man’s very nature precludes the possibility of critical enquiry based on rational criteria of extratemporal validity. Controversial postmodernist trends stress differences rather than unity and localize and relativize values and meanings. There is a widespread belief that “the positive knowledge of science may not ultimately be for the best, as the downside of scientifically produced military and industrial technics becomes quite unavoidably apparent” [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christie JRR (1993) Aurora, nemesis and clio. Br. J. Hist. Sci. 26: 391–405

    Article  Google Scholar 

  2. McCormmach R (1971) Editor’s foreward. HSPS 3; ix-xxiv

    Google Scholar 

  3. Olesko K (1980) The emergence of theoretical physics in Germany: Franz Neumann and the Konigsberg School of Physics, 1830–1890. Dissertation, Cornell University

    Google Scholar 

  4. Jungnickel C, McCormmach (1986) Intellectual mastery of nature, 2 vols. Chicago University Press, Chicago

    Google Scholar 

  5. Kuhn TS (1976) Mathematical versus experimental traditions in the development of physical science. Interdisciplinary History 7: 1–31

    Article  Google Scholar 

  6. Schuster J (1990) The scientific revolution. In: Olby RC, Cantor GN, Christie JRR, Hodge MJS (eds) Companion to the history of modern science Routledge, London, p 217–243

    Google Scholar 

  7. Lindberg DC, Westman RS (1990) Reappraisal of the scientific revolution. Cambridge

    Google Scholar 

  8. Cunningham A, Williams P (1993) De-centring the ‘big picture’: the origins of modern science and the modern origins of science. BJHS 26: 407–432

    Article  Google Scholar 

  9. Kuhn TS (1985) Tradizioni matematiche e tradizioni sperimentali nello sviluppo delle scienze fisiche. La tensione essenziale, cambiamenti e continuità nella scienza. Turin, pp 37–74 (see reference 5)

    Google Scholar 

  10. Heilbron J (1984) Alle origini della fisica moderna. Il caso dell’electtricità. Bologna

    Google Scholar 

  11. Bevilacqua F, Ferraresi A (1991) Per una storia dello sviluppo della matematica e della fisica a Parigi e a Pavia in eta francese. Annali di Storia Pavese 20: 199–249

    Google Scholar 

  12. Fox R (1974) The rise and fall of Laplacian physics. HSPS 4: 89–136

    Google Scholar 

  13. Grattan-Guinness: I (1990) Convolutions in French mathematics, 1800–1840, 3 vols. Birkhäuser Basel

    Book  Google Scholar 

  14. Shinn T (1979) The French science faculty system, 1808–1914: institutional change and research potential in mathematics and the physical science. HSPS 10: 294

    Google Scholar 

  15. Fox R (1975) Regnault HV DSB 11: 352–354

    Google Scholar 

  16. Davis L (1986) The influence of astronomy and the character of physics in mid-nineteenth century France. HSPS 16: 59–82

    Google Scholar 

  17. Nye M (1983) Recent sources and problems in the history of French science. HSPS 13: 401–415

    Google Scholar 

  18. Crosland M, Smith C (1978) The transmission of physics from France to Brittain: 1800–1840. HSPS 9: 1–62

    Google Scholar 

  19. Wilson DB (1985) The educational matrix: physics at early-Victorian Cambridge, Edinburgh and Glasgow universities. In Harman PM (ed) Wranglers and physicists. Manchester University Press, Manchester, pp 12–48

    Google Scholar 

  20. Wilson DB (1982) Experimentalists among the mathematicians: physics in the Cambridge natural science tripos, 1851–1900. HSPS 12: 325–372

    Google Scholar 

  21. Grattan-Guinness I (1985) Mathematics and physics from Cambridge 1815–1840: a survey of the achievements and of the French influences. In: Harman PM (ed) Wranglers and physicists. Manchester University Press, Manchester pp 84–111

    Google Scholar 

  22. Becher HW (1980) William Whewell and Cambridge mathematics. HSPS 11: 1–48

    Google Scholar 

  23. Morrell JB (1971) Individualism and the structure of British science in 1830. HSPS 3: 183–204

    Google Scholar 

  24. Smith C, Norton Wise M (1989) Energy and empire. A biographical study of Lord Kelvin. Cambridge University Press, Cambridge

    Google Scholar 

  25. Porter TM (1981) A statistical survey of gases: Maxwell’s social physics. HSPS 12: 77–116

    Google Scholar 

  26. Harman PM (ed) Wranglers and physicists. Studies on Cambridge mathematical physics in the nineteenth century. Manchester University Press, Manchester

    Google Scholar 

  27. Cantor G (1991) Michael Faraday. Sandemanian and scientist. MacMillan, London

    Google Scholar 

  28. Cardwell DS (1989) James Joule. A biography. Manchester University Press, Manchester

    Google Scholar 

  29. Caneva KL (1978) From galvanism to electrodynamics: the transformation of German physics and its social context. HSPS 9: 63–170

    Google Scholar 

  30. Jungnickel C (1979) Teaching and research in the physical science and mathematics in Saxony, 1820–1850. HSPS 10: 3–47

    Google Scholar 

  31. Turner RS (1971) The growth of professional research in Prussia, 1818–1848. Causes and context. HSPS 3: 137–182

    Google Scholar 

  32. Olesko KM (1991) Physics as a calling. Cornell University Press, Ithaca

    Google Scholar 

  33. Heimann PM Helmholtz and Kant HSPS 5: 205–238

    Google Scholar 

  34. Heimann PM (1976) Mayer’s concept of force: the axis of a new science of physics HSPS 7: 277–296

    CAS  Google Scholar 

  35. Heimann PM (1982) Energy force and matter. Cambridge University Press, Cambridge

    Google Scholar 

  36. Bevilacqua F (1993) Helmholtz’ Ueber die Erhaltung der Kraft: the emergence of a theoretical physicist. In: Cahan D (ed) Hermann von Helmholtz and the foundations of nineteenth-century science. California University Press, Los Angeles, p 289–331

    Google Scholar 

  37. Helmholtz Hvon (1847) Ueber die Erhaltung der Kraft, reprinted in 1882 Wissenschaftliche Abhandlung Vol I, pp 12–75, p 13

    Google Scholar 

  38. Elkana Y (1974) The Discovery of the Conservation of Energy. Hutchinson Educational, London

    Google Scholar 

  39. Helmholtz Hvon (1882) Appendix to the Erhaltung Wissenschaftliche Abhandlung Vol I, pp 71–3

    Google Scholar 

  40. Helmholtz Hvon (1884) Robert Mayers’s Prioritat. In: Vorträge und Reden, 2 vols. Vieweg, Braunschweig

    Google Scholar 

  41. Helmholtz Hvon (1884) Appendix to Das Denken in der Medecin. In: Vorträge und Reden, 2 vols. Vieweg, Braunschweig

    Google Scholar 

  42. Planck M (1887) Das Princip der Erhaltung der Energie. Teubner, Leipzig p 21–8

    Google Scholar 

  43. Helm G (1898) Die Energetik. Veit, Leipzig

    Google Scholar 

  44. Haas AE (1909) Die Entwicklungsgeschichte des Satzes von der Erhaltung der Kraft Holder, Vienna

    Google Scholar 

  45. Lindsay R (1973) Julius Robert Mayer, prophet of energy. Pergamon, Oxford

    Google Scholar 

  46. Clausius R (1853) On the mechanical equivalent of an electric discharge, and the heating of the conducting wire which accompanies it. Tyndall and Francis Scientific Memoirs on Natural Philosophy 1: 1–32, 200–209

    Google Scholar 

  47. Clausius R (1870) De la fonction potentielle et du potentiel. Gauthier-Villars, Paris

    Google Scholar 

  48. Boltzmann L (1974) Theoretical Physics and Philosophical Problems Reidel pp 255–6

    Google Scholar 

  49. see reference 4) Vo. II, pp 154–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bevilacqua, F. (1995). The Emergence of Theoretical Physics in the Second Half of the Nineteenth Century. In: Zwilling, R. (eds) Natural Sciences and Human Thought. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78685-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78685-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57518-4

  • Online ISBN: 978-3-642-78685-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics