Skip to main content

Epithelial Transport of Heavy Metals

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 20))

Abstract

There is no rigorous chemical definition of what constitutes a heavy metal. In the biological context the classification generally includes polyvalent metals present in aqueous solution as complex ions or chelate compounds. The heavy metals as a class include many frankly toxic elements such as lead and cadmium for which no convincing biological functions has yet been described. Other heavy metals, while toxic at higher concentrations, may play an essential role at low levels, as has been suggested, for instance, for Cr (Mertz 1969).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aungst BJ, Fung HL (1981) Kinetic characterization of in vitro lead transport across the rat small intestine: mechanism of intestinal lead transport. Toxicol Appl Pharmacol 61: 39–47

    PubMed  CAS  Google Scholar 

  • Barton JC (1984) Active transport of lead-210 by everted segments of rat duodenum. Am J Physiol 247: G193–G198

    CAS  Google Scholar 

  • Becker WM, Hoekstra WG (1971) The intestinal absorption of zinc. In: Skoryna SC, Waldron-Edwards D (eds) Intestinal absorption of metal ions, trace elements and radionuclides. Pergamon Press, Oxford, pp 229–256

    Google Scholar 

  • Berlin M, Gibson S (1963) Renal uptake retention and excretion of mercury. Arch Environ. Health 6: 617–625

    CAS  Google Scholar 

  • Berlin M, Nordberg G, Hellberg J (1973) The uptake and distribution of methyl mercury in the brain of Saimiri sciurens in relation to behavioral and morphological changes. In: Miller MW, Clarkson TW (ed) Mercury, mercurials and mercaptans. CC Thomas, Springfield, IL, pp 187–208

    Google Scholar 

  • Bernard A, Lauwerys R (1986) Effects of cadmium exposure in humans. In: Foulkes EC (ed) Cadmium. Handbook of experimental pharmacology, vol 80. Springer, Berlin Heidelberg New York, pp 135–177

    Google Scholar 

  • Bevan C, Foulkes EC (1989) Interaction of cadmium with brush border membrane vesicles from the rat small intestine. Toxicology 54: 297–309

    PubMed  CAS  Google Scholar 

  • Blazka ME, Shaikh ZA (1991) Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol Appl Pharmacol 110: 355–363

    PubMed  CAS  Google Scholar 

  • Bonewitz RF, Voner C, Foulkes EC (1982) Uptake and absorption of zinc in perfused rat jejunum: the role of endogenous factors in the lumen. Nutr Res 2: 301–307

    CAS  Google Scholar 

  • Bonewitz RF, Foulkes EC, O’Flaherty EJ, Hertzberg VS (1983) Kinetic of zinc absorp­tion by rat jejunum: effects of adrenalectomy and dexamethasone. Am J Physiol 244: G314–G320

    PubMed  CAS  Google Scholar 

  • Borghgraef RRM, Kessler RH, Pitts RF (1956) Plasma regression, distribution and excretion of radiomercury in relation to diuresis following the intravenous administration of 203Hg­labelled chlormerodrin to the dog. J Clin Invest 35: 1055–1066

    PubMed  CAS  Google Scholar 

  • Bronner F, Thompson DD (1961) Renal transtubular flux of electrolytes in dogs with special reference to calcium. J Physiol (Lond) 157: 232–250

    CAS  Google Scholar 

  • Brueggeman IM, Van Bladeren PJ, Temmink JHM (1990) Transport and toxicity of CdC12 in LLC-PK1 cells. Toxicol Lett 53: 167–168

    Google Scholar 

  • Bushnell PJ, DeLuca HF (1981) Lactose facilitates the intestinal absorption of lead in weanling rats. Science 211: 61–63

    PubMed  CAS  Google Scholar 

  • Cain K, Griffiths BL (1980) Transfer of liver cadmium to the kidney after aflatoxin-induced liver damage. Biochem Pharmacol 29: 1852–1855

    PubMed  CAS  Google Scholar 

  • Cain K, Holt DE (1983) Studies of cadmium-thionein induced nephropathy: time course of cadmium-thionein uptake and degradation. Chem Biol Int 43: 223–237

    CAS  Google Scholar 

  • Carroll KG, Spinelli FR, Goyer RA (1970) Electron probe microanalyzer localization of lead in kidney tissue of poisoned rats. Nature 227: 1056

    PubMed  CAS  Google Scholar 

  • Chisolm JJ, Harrison HC, Eberlein WR, Harrison HE (1955) Aminoaciduria hypophosphatemia and rickets in lead poisoning: study of a case. Am J Dis Child 89: 159–168

    CAS  Google Scholar 

  • Clarkson TW, Cross A (1961) Studies of the action of mercuric chloride on intestinal absorption. Univ Rochester AEC Rep 588

    Google Scholar 

  • Clarkson TW, Kench JE (1956) Urinary excretion of amino acids by men absorbing heavy metals. Biochem J 62: 361–372

    PubMed  CAS  Google Scholar 

  • Clarkson TW, Small H, Norseth T (1973) Excretion and absorption of methyl mercury after polythiol resin treatment. Arch Environ Health 26: 173–176

    PubMed  CAS  Google Scholar 

  • Conrad ME, Barton JC (1978) Factors affecting the absorption and excretion of lead in the rat. Gastroenterology 74: 731–740

    PubMed  CAS  Google Scholar 

  • Cotzias GC, Borg DC, Selleck B (1961) Virtual absence of turnover in Cd metabolism: Cd109 studies in the mouse. Am J Physiol 201: 927–930

    PubMed  CAS  Google Scholar 

  • Cousins RJ (1985) Absorption, transport and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin Physiol Rev 65: 238–309

    PubMed  CAS  Google Scholar 

  • Elinder C-G, Friberg L, Lind B, Jawaid M (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30: 233–253

    PubMed  CAS  Google Scholar 

  • Endo T, Nakaya S, Kimura R, Murata T (1986) Gastrointestinal absorption of inorganic mercury compounds in vitro. Toxicol Appl Pharmacol 83: 187–196

    PubMed  CAS  Google Scholar 

  • Evans GW, Johnson EC (1980) Zinc absorption in rats fed a low-protein diet supplemented with tryptophan or picolinic acid. J Nutr 110: 1076–1080

    PubMed  CAS  Google Scholar 

  • Evans GW, Johnson EC, Johnson PE (1979) Zinc absorption in the rat determined by radioisotope dilution. J Nutr 109: 1258–1264

    PubMed  CAS  Google Scholar 

  • Felley-Bosco E, Diezi J (1987) Fate of cadmium in rat renal tubules: a microinjection study. Toxicol Appl Pharmacol 91: 204–211

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1974) Excretion and retention of cadmium, zinc and mercury by rabbit kidney. Am J Physiol 227: 1356–1360

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1977) Mechanism of renal excretion of environmental agents. In: Lee DHK (ed) Handbook of physiology, section 9: reaction to environmental agents. Am Physiol Soc, Bethesda, MD, pp 495–502

    Google Scholar 

  • Foulkes EC (1978) Apparent competition between myoglobín and metallothionein for renal reabsorption. Proc Soc Exp Biol Med 159: 321–323

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1980) Some determinants of intestinal cadmium transport in the rat. J Environ Pathol Toxicol 3: 471–481

    Google Scholar 

  • Foulkes EC (1984) Intestinal absorption of heavy metals. In: Csaky TZ (ed) Pharmacology of intestinal permeation. Handbook experimental pharmacology, vol 70. Springer, Berlin Heidelberg New York, pp 543–565

    Google Scholar 

  • Foulkes EC (1985a) Interactions between metals in rat jejunum: implications on the nature of cadmium uptake. Toxicology 37: 117–125

    CAS  Google Scholar 

  • Foulkes EC (1985b) Critical concentration of cadmium in human renal cortex: an update. Trace substances in environmental health, vol 119. University of Missouri, Columbia, pp 129–133

    Google Scholar 

  • Foulkes EC (1986) Absorption of cadmium. In: Foulkes EC (ed) Cadmium. Handbook of experimental pharmacology, vol 80. Springer, Berlin Heidelberg New York, pp75–100

    Google Scholar 

  • Foulkes EC (1988) On the transfer of heavy metals across cell membranes. Toxicology 52: 263–272

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1989) On the mechanism of cellular cadmium uptake. Biol Trace Elem Res 21: 195–200

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1990) The concept of critical levels of toxic heavy metals in target tissues. Crit Rev Toxicol 20: 327–339

    PubMed  CAS  Google Scholar 

  • Foulkes EC (1991a) Further findings on the mechanism of cadmium uptake by intestinal mucosal cells. Toxicology 70: 261–270

    CAS  Google Scholar 

  • Foulkes EC (1991b) Nature of Cd and Hg effects on epithelial amino acid transport in vivo and role of chelators. Toxicology 69: 177–185

    CAS  Google Scholar 

  • Foulkes EC (1992) Renal transport of heavy metals. In: Anders MW, Dekant W, Henschler D et al. (eds) Renal disposition and nephrotoxicity of xenobiotics. Academic Press, New York, pp 117–134

    Google Scholar 

  • Foulkes EC (1993) Metallothionein and glutathione as determinants of cellular retention and extrusion of cadmium and mercury. Life Sci 52: 1617–1620

    PubMed  CAS  Google Scholar 

  • Foulkes EC, Banks RO (1968) Significance of urinary precession of sodium over simulta­neously injected inulin. Am J Physiol 215: 574–581

    PubMed  CAS  Google Scholar 

  • Foulkes EC, Bergman D (1993) Inorganic mercury absorption in mature and immature rat jejunum: transcellular and intercellular pathways in vitro and in everted sacs. Toxicol Appl Pharmacol 120: 89–95

    PubMed  CAS  Google Scholar 

  • Foulkes EC, Blanck S (1990) Acute cadmium uptake by rabbit kidneys: mechanism and effects. Toxicol Appl Pharmacol 102: 464–473

    PubMed  CAS  Google Scholar 

  • Foulkes EC, McMullen DM (1986a) Endogenous metallothionein as determinant of intestinal cadmium absorption: a reevaluation. Toxicology 38: 285–291

    CAS  Google Scholar 

  • Foulkes EC, McMullen DM (1986b) On the mechanism of nickel absorption in the rat jejunum. Toxicology 38: 35–42

    CAS  Google Scholar 

  • Foulkes EC, McMullen DM (1987) Kinetics of transepithelial movement of heavy metals in rat jejunum. Am J Physiol 253: G134–G138

    PubMed  CAS  Google Scholar 

  • Foulkes EC, Voner C (1981) Effects of Zn status, bile and other endogenous factors on jejunal cadmium absorption. Toxicology 22: 115–122

    PubMed  CAS  Google Scholar 

  • Foulkes EC, Mort T, Buncher R (1991) Intestinal cadmium permeability in mature and immature rats. Proc Soc Exp Biol Med 197: 477–481

    CAS  Google Scholar 

  • Frame MDS, Milanick MA (1991) Mn and Cd transport by the Na-Ca exchange of ferret red blood cells. Am J Physiol 261: C467–C475

    PubMed  CAS  Google Scholar 

  • Friberg L (1956) Studies on the accumulation, metabolism and excretion of inorganic mercury after prolonged subcutaneous administration to rats. Acta Pharmacol Toxicol 12: 411–427

    CAS  Google Scholar 

  • Fromter E, Diamond J (1972) Route of passive ion permeation in epithelia. Nature (New Biol) 235: 9–13

    CAS  Google Scholar 

  • Grinstein S, Candia O, Erlij D (1978) Nonhormonal mechanisms for the regulation of transepithelial sodium transport: the roles of surface potential and cell calcium. J Membr Biol 40 (Spec No): 261–280

    PubMed  CAS  Google Scholar 

  • Gunn SA, Gould TC (1957) Selective accumulation of Cd215 by cortex of rat kidney. Proc Soc Exp Biol Med 96: 820–823

    PubMed  CAS  Google Scholar 

  • Hadley JG, Conklin AS, Sanders CL (1980) Rapid solubilization and translocation of 109CdO following pulmonary deposition. Toxicol Appl Pharmacol 54: 156–160

    PubMed  CAS  Google Scholar 

  • Hastings L, Sun TJ (1987) Effects of cadmium on rat olfactory system. Olfaction and taste IX. Ann NY Acad Sci 510: 355

    Google Scholar 

  • Hider RC, Ejim L, Taylor PP, Gale R, Huehns E, Porter JB (1990) Facilitated uptake of zinc into human erythrocytes. Biochem Pharmacol 39: 1005–1012

    PubMed  CAS  Google Scholar 

  • Hillyard SD, Gonick HC (1976) Effects of Cd on short-circuit current across epithelial membranes. I. Interactions with Ca2+ and vasopressin on frog skin. J Membr Biol 26: 109–119

    PubMed  CAS  Google Scholar 

  • Hinkle PM, Kinsella PA, Osterhoudt KC (1987) Cadmium uptake and toxicity via voltage-sensitive calcium channels. J Biol Chem 262: 16333–16337

    PubMed  CAS  Google Scholar 

  • Hirayama K (1975) Transport mechanism of methyl mercury. Intestinal absorption, biliary excretion and distribution of methyl mercury. Kumamoto Med J 28: 151–163

    PubMed  CAS  Google Scholar 

  • Israel EJ, Pang KY, Harmatz PR, Walker WA (1987) Structural and functional maturation of rat gastrointestinal barrier with thyroxine. Am J Physiol 252: G762–G767

    PubMed  CAS  Google Scholar 

  • Johnson DR (1982) Role of renal cortical sulfhydryl groups in development of mercury-induced renal toxicity. J Toxicol Environ Health 9: 119–126

    PubMed  CAS  Google Scholar 

  • Johnson DR, Foulkes EC (1980) On the proposed role of metallothionein in the transport of cadmium. Environ Res 21: 360–365

    PubMed  CAS  Google Scholar 

  • Kagi JHR, Vallee BL (1960) Metallothionein: a cadmium and zinc containing protein from equine renal cortex. J Biol Chem 235: 3460–3465

    PubMed  CAS  Google Scholar 

  • Kello D, Dekanic D, Kostial K (1979) Influence of sex and dietary calcium on intestinal cadmium absorption in rats. Arch Environ Health 34: 30–33

    PubMed  CAS  Google Scholar 

  • Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am J Physiol 262: R761–R765

    PubMed  CAS  Google Scholar 

  • Kiyozumi M, Kojima S (1978) Studies on poisonous metals. V. Excretion of cadmium through bile and gastrointestinal mucosa and effect of chelating agents on its excretion in cadmium-pretreated rats. Chem Pharm Bull (Tokyo) 26: 3410–3415

    CAS  Google Scholar 

  • Kjellstrom T (1971) A mathematical model for the accumulation of cadmium in human kidney cortex. Nord Hyg Tidskr 52: 111–119

    PubMed  CAS  Google Scholar 

  • Kjellstrom T, Ellinder C-G, Friberg L (1984) Conceptual problems in establishing the critical concentration of cadmium in human kidney cortex. Environ Res 33: 284–295

    PubMed  CAS  Google Scholar 

  • Kojima S, Kiyozumi M (1974) Studies on poisonous metals I. Transfer of cadmium chloride across rat small intestines in vitro and effect of chelating agents on its transfer. Yakugaku Zasshi 94: 695–701

    PubMed  CAS  Google Scholar 

  • Kostial K, Kello D, Jugo S, Rabar I, Maljkovic T (1978) Influence of age on metal metabolism and toxicity. Environ Health Perspect 25: 81–86

    PubMed  CAS  Google Scholar 

  • Kostial K, Rabar I, Blanusa M, Landeka M (1979) Effect of age on heavy metal absorption. Proc Nutr Soc 38: 251–256

    PubMed  CAS  Google Scholar 

  • Lou M, Garay R, Alda JO (1991) Cadmium uptake through the anion exchanger in human red blood cells. J Physiol 443: 123–136

    PubMed  CAS  Google Scholar 

  • Machen TE, Erlig D, Wooding FBP (1972) Permeable junctional complexes: the movement of lanthanum across rabbit gall bladder and intestine. J Cell Biol 54: 302–312

    PubMed  CAS  Google Scholar 

  • Menard MP, Cousins RJ (1983) Zinc transport by brush border membrane vesicles from rat intestine. J Nutr 113: 1434–1442

    PubMed  CAS  Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological systems. Physiol Rev 49: 163–239

    PubMed  CAS  Google Scholar 

  • Methfessel AH, Spencer H (1973) Zinc metabolism in the rat. I. Intestinal absorption of zinc. J Appl Physiol 34: 58–62

    PubMed  CAS  Google Scholar 

  • Miettinen J (1973) Absorption and elimination of dietary mercury or methylmercury in man. In: Clarkson TW, Miller MW (eds) Mercury, Mercurials and Mercaptans. CC Thomas, Springfield, pp 233–240

    Google Scholar 

  • Morrow PE, Beiter H, Amato F, Cribb FR (1980) Pulmonary retention of lead: an experi­mental study in man. Environ Res 21: 373–384

    PubMed  CAS  Google Scholar 

  • Neathery MW, Miller WJ (1975) Metabolism and toxicity of cadmium, mercury and lead in animals: a review. J Dairy Sci 58: 1767–1781

    PubMed  CAS  Google Scholar 

  • Nomiyama K (1977) Does a critical concentration of cadmium in human renal cortex exist? J Toxicol Environ Health 3: 607–609

    PubMed  CAS  Google Scholar 

  • Nomiyama K, Foulkes EC (1977) Reabsorption of filtered metallothionein in the rabbit kidney. Proc Soc Exp Biol Med 156: 97–99

    PubMed  CAS  Google Scholar 

  • Nomiyama K, Nomiyama H (1982) Tissue metallothioneins in rabbits chronically exposed to cadmium, with special reference to the critical concentration of cadmium in the renal cortex. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier North Holland, Amster­dam, pp 47–67

    Google Scholar 

  • Nordberg GF, Goyer R, Nordberg M (1975) Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch Pathol 99: 192–197

    PubMed  CAS  Google Scholar 

  • Ohta H, DeAngelis MV, Cherian MG (1989) Uptake of cadmium and metallothionein by rat everted intestinal sacs. Toxicol Appl Pharmacol 101: 62–69

    PubMed  CAS  Google Scholar 

  • Oskarsson A, Squibb KS, Fowler BA (1982) Intracellular binding of lead in the kidney: the partial isolation and characterization of post-mitochondrial lead binding components. Biochem Biophys Res Commun 104: 290–298

    PubMed  CAS  Google Scholar 

  • Page AL, El-Amamy MM, Chang AC (1986) Cadmium in the environment and its entry into terrestrial food chain crops. In: Foulkes EC (ed) Cadmium. Handbook of experimental pharmacology, vol 80. Springer, Berlin Heidelberg New York, pp 33–74

    Google Scholar 

  • Pecoud A, Donzel P, Schelling JL (1975) Effect of foodstuffs on the absorption of zinc sulfate. Clin Pharmacol Ther 17: 469–474

    PubMed  CAS  Google Scholar 

  • Pekas JC (1966) Zinc65 metabolism: gastrointestinal secretion by the pig. Am J Physiol 211: 407–413

    PubMed  CAS  Google Scholar 

  • Perl DP, Good PF (1987) Uptake of aluminum into central nervous system along nasal-olfactory pathway;s. Lancet May 2: 1028

    Google Scholar 

  • Piscator M (1964) Cadmium in the kidneys of normal human beings and the isolation of metallothionein from liver of rabbits exposed to cadmium. Nord Hyg Tidskr 45: 76–82

    PubMed  CAS  Google Scholar 

  • Piscator M (1966) Proteinuria in chronic cadmium poisoning 3. Electrophoretic and immunoelectrophoretic studies on urinary proteins from cadmium workers, with special reference to the excretion of low molecular weight proteins. Arch Environ Health 12: 335–344

    PubMed  CAS  Google Scholar 

  • Powell D (1981) Barrier function of epithelia. Am J Physiol 241: G275–G288

    PubMed  CAS  Google Scholar 

  • Quarterman J, Morrison JN (1975) The effects of dietary calcium and phosphorus on the retention and excretion of lead in rats. Br J Nutr 34: 351–362

    PubMed  CAS  Google Scholar 

  • Rabar I, Kostial K (1981) Bioavailability of cadmium in rats fed various diets. Arch Toxicol 47: 63–66

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB, Weatherill GW, Kopple JD (1976) Kinetic analysis of lead metabolism in healthy humans. J Clin Invest 58: 260–270

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB, Wetherill GW, Kopple JD (1977) Magnitude of lead intake from respiration by normal man. J Lab Clin Med 90: 238–248

    PubMed  CAS  Google Scholar 

  • Rabinowitz MB, Kopple JD, Weatherill GW (1980) Effect of food intake and fasting on gastrointestinal lead absorption in humans. Am J Clin Nutr 33: 1784–1788

    PubMed  CAS  Google Scholar 

  • Raghavan SRV, Culver BD, Gonick HC (1981) Erythrocyte lead-binding protein after occupa­tional exposure IV. Influence of lead inhibition of membrane Na+, K+-adenosinetriphos­phatase. J Toxical Environ Health 7: 561–568

    CAS  Google Scholar 

  • Richards MP, Cousins RJ (1975) Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis. Biochem Biophys Res Commun 64: 1215–1223

    PubMed  CAS  Google Scholar 

  • Sahagian BM, Harding-Barlow I, Perry HM (1967) Transmural movements of zinc, manga­nese, cadmium and mercury by rat small intestine. J Nutr 93: 291–300

    PubMed  CAS  Google Scholar 

  • Sasser LB, Jarboe GE, Walter BK, Kelman BJ (1978) Absorption of mercury from ligated segments of the rat gastrointestinal tract. Proc Soc Exp Biol Med 157: 57–60

    CAS  Google Scholar 

  • Scholtz E, Zeiske W (1988) A novel synergistic stimulation of Nat-transport across frog skin (Xenopus laevis) by external Cd2+- and Ca2+-ions. Pfluegers Arch Eur J Physiol 413: 174–180

    CAS  Google Scholar 

  • Silverman M, Aganon MA, Chinard FP (1970) Specificity of monosaccharide transport in the dog kidney. Am J Physiol 218: 743–750

    PubMed  CAS  Google Scholar 

  • Simons TJ (1986) The role of anion transport in the passive movement of lead across the human red cell membrane. J Physiol (Lond) 378: 287–312

    CAS  Google Scholar 

  • Six KM, Goyer RA (1972) The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J Lab Clin Med 79: 128–136

    PubMed  CAS  Google Scholar 

  • Skoryna SC, Waldron-Edwards D (eds) (1970) Intestinal absorption of metal ions, trace elements and radionuclides. Pergamon Press, New York

    Google Scholar 

  • Smith CM, DeLuca HF, Tanaka Y, Mahaffey KR (1978) Stimulation of lead absorption by vitamin D administration. J Nutr 108: 843–847

    PubMed  CAS  Google Scholar 

  • Smith KT, Cousins RJ, Silbon BL, Failla ML (1978) Zinc absorption and metabolism by isolated vascularly perfused rat intestine. J Nutr 108: 1849–1857

    PubMed  CAS  Google Scholar 

  • Squibb K, Pritchard JB, Fowler BA (1984) Cadmium-metallothionein nephropathy: relation­ships between ultrastructural/biochemical alterations and ultracellular cadmium binding. J Pharm Exp Ther 229: 311–321

    CAS  Google Scholar 

  • Stacy BD, Thornburn GD (1966) Chromium-51 ethylene-diaminetetraacetate for estimation of glomerular filtration rate. Science 152: 1076–1077

    PubMed  CAS  Google Scholar 

  • Sugawara N (1982) Role of metallothionein in zinc uptake from rat jejunum. In: Foulkes EC (ed) Biological roles of metallothionein. Elsevier, New York, pp 155–162

    Google Scholar 

  • Takada M, Hayashi H (1980) Effect of cadmium on active sodium transport by the abdominal skin and the isolated epidermis of the bullfrog. Jpn J Physiol 30: 257–269

    PubMed  CAS  Google Scholar 

  • Takahashi H, Hirayama K (1971) Accelerated elimination of methyl mercury from animals. Nature 232: 201–202

    PubMed  CAS  Google Scholar 

  • Tanaka T, Naganuma A, Imura N (1990) Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology 60: 187–198

    PubMed  CAS  Google Scholar 

  • Tepperman HM (1947) Effect of BAL and BAL-glucoside therapy on excretion and tissue distribution of injected cadmium. J Pharmacol Exp Ther 89: 343–349

    PubMed  CAS  Google Scholar 

  • Tidball CS (1964) Magnesium and calcium as regulators of intestinal permeability. Am J Physiol 206: 243–246

    PubMed  CAS  Google Scholar 

  • Torrubia JO, Garay R (1989) Evidence for a major route for Zn uptake in human red blood cells: [Zn(HCO3)2C1]- influx through the CI /HCO3 anion exchanger. J Cell Physiol 138: 316–322

    PubMed  CAS  Google Scholar 

  • Ullrich KJ, Rumrich G, Wieland T, Dekant W (1989) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. Pfluegers Arch Eur J Physiol 415: 342–350

    CAS  Google Scholar 

  • Vander AJ, Taylor DL, Kalitis K, Mouw DR, Victery W (1977) Renal handling of lead in dogs: clearance studies. Am J Physiol 233: F532–F538

    PubMed  CAS  Google Scholar 

  • Victery W, Vander AJ, Mouw DR (1979) Renal handling of lead in dogs: stop-flow analysis. Am J Physiol 237: F408–F414

    PubMed  CAS  Google Scholar 

  • Victery W, Miller CR, Fowler BA (1984) Lead accumulation by rat renal brush border membrane vesicles. J Pharmacol Exp Ther 231: 589–596

    PubMed  CAS  Google Scholar 

  • Vostal J, Heller J (1968) Renal excretory mechanisms of heavy metals. I. Transtubular transport of heavy metal ions in the avian kidney. Environ Res 2: 1–10

    PubMed  CAS  Google Scholar 

  • Weiner MW, Jacobs C (1983) Mechanism of cisplatin nephrotoxicity. Fed Proc 42: 2974–2978

    PubMed  CAS  Google Scholar 

  • Whittembury G, Rawlins FA (1971) Evidence for a paracellular pathway for ion flow in the kidney proximal tubule. Pfluegers Arch Eur J Physiol 330: 302–309

    CAS  Google Scholar 

  • Zalups RK, Barfuss D (1990) Accumulation of inorganic mercury along the renal proximal tubule of the rabbit. Toxicol Appl Pharmacol 106: 245–253

    PubMed  CAS  Google Scholar 

  • Zhao JY, Foulkes EC, Jones M (1990) Delayed nephrotoxic effects of cadmium and their reversibility by chelation. Toxicology 64: 235–243

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foulkes, E.C. (1994). Epithelial Transport of Heavy Metals. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78598-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78598-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78600-6

  • Online ISBN: 978-3-642-78598-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics