Skip to main content

G-Proteins Have Properties of Multimeric Proteins: An Explanation for the Role of GTPases in their Dynamic Behavior

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

The possible structural organization of surface membrane receptors, heterotrimeric GTP-binding regulatory proteins (G-proteins), and effectors (adenylyl cyclase, phospholipases, phosphodiesterases, ion channels, etc.) is a major unresolved question. The physical relationship between these elements has been discussed in an insightful review of the role of G-proteins in signal transduction (NeeR and Clapham 1988). One of the questions raised is whether the components of signal transduction are free to move (“float”) in the plane of the membrane and interact in accordance with their relative affinities for each other. Given nature’s propensity to spatially organize and regulate structures in a highly specialized, nonrandom fashion, perhaps the question should be posed: how are receptors, transducers, and effectors spatially organized for rapid, efficient, and reversible interactions that only allow restricted diffusion of the components? There is evidence that receptors are precoupled to G-proteins in the absence of agonists (for example, see Watanabe et al. 1986). As discussed elsewhere in detail (Rodbell 1991; Rodbell 1992), there are many reasons to believe that receptors are coupled with heterotrimeric G-proteins structured in the form of multimers. As in the case of membrane proteins attached to filamental actin, it is likely that such large structures have restricted mobility in the membrane. As for effectors, it has been suggested that adenylyl cyclase is linked, indirectly or directly, to actin (Watson 1990). Other potential effectors such as sodium and calcium channels also appear to be associated with actin through the actin-binding protein ankyrin (Davis and Bennett 1990; Edelstein et al. 1988), implying organized, fixed locations of effectors associated with the intracellular cytoskeletal matrix. If such organization applies to all signal transduction systems, it must be concluded that some type of signal is emitted from the receptor—G-protein complex that can be rapidly and reversibly conveyed between immobilized receptor—G-protein complexes and immobilized effectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Samra A-B, Jüppner H, Force T, Freeman MV, Kong X-F, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT Jr, Kronenberg HM, Segre GV (1992) Expression cloning of a rat bone PTH/PTHrP receptor: a single receptor activates both adenylate cyclase and phospholipase C. Proc Natl Acad Sci USA 89:2732–2736.

    Article  PubMed  CAS  Google Scholar 

  • Antonny B, Chabre M (1992) Characterization of the aluminum and beryllium fluoride species which activate transducin: analysis of the binding and dissociation kinetics. J Biol Chem 267:6710–6718.

    PubMed  CAS  Google Scholar 

  • Arshavsky VY, Bownds MD (1992) Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature 357:416–417.

    Article  PubMed  Google Scholar 

  • Bourguignon L, Singer SJ (1977) Transmembrane interaction and the mechanism of capping surface receptors by their specific ligands. Proc Natl Acad Sci USA 74:5031–5035.

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF (1990) Actin polymerization and ATP hydrolysis. Adv Biophys 26:51–73.

    Article  PubMed  CAS  Google Scholar 

  • Cassel D, Levkovitz H, Selinger Z (1977) The regulatory GTPase cycle of turkey erythrocyte adenylate cyclase. J Cyclic Nucleotide Res 3:393–406.

    PubMed  CAS  Google Scholar 

  • Chabre M, Bigay J, Bruckert F, Bornancin F, Deterre P, Pfister C, Vuong TM (1988) Visual signal transduction: the cycle of transducin shuttling between rhodopsin and cGMP phosphodiesterase. Cold Spring Harbor Symp Quant Biol 53:313–324.

    PubMed  CAS  Google Scholar 

  • Codina J, Hildebrandt JD, Birnbaumer L, Sekura RD (1984) Effects of guanine nucleotides and Mg on human erythrocyte Ni and Ns, the regulatory components of adenylyl cyclase. J Biol Chem 259:11408–11418.

    PubMed  CAS  Google Scholar 

  • Coulter S, Rodbell M (1992) Heterotrimeric G proteins in synaptoneurosome membranes are crosslinked by p-phenylenedimaleimide, yielding structures comparable in size to crosslinked tubulin and F-actin. Proc Natl Acad Sci USA 89:5842–5846.

    Article  PubMed  CAS  Google Scholar 

  • Davis LH, Bennett V (1990) Mapping the binding sites of human erythrocyte ankyrin for the anion exchanger and spectrin. J Biol Chem 265:10589–10596.

    PubMed  CAS  Google Scholar 

  • Edelstein NG, Catterall WA, Moon RT (1988) Identification of a 33-kilodalton cytoskeletal protein with high affinity for the sodium channel. Biochemistry 27:1818–1822.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald TJ, Uhing RJ, Exton JH (1986) Solubilization of the vasopressin receptor from rat liver plasma membranes. Evidence for a receptor GTP-binding protein complex. J Biol Chem 261:16871–16877.

    PubMed  CAS  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Birnbaumer M, Birnbaumer L (1992) Evidence for dual coupling of the murine luteinizing hormone receptor to adenylyl cyclase and phosphoinositide breakdown and Ca2+ mobilization. J Biol Chem 267:4479–4489.

    PubMed  CAS  Google Scholar 

  • Iyengar R, Rich KA, Herberg JT, Premont RT, Codina J (1988) Glucagon receptormediated activation of Gs is accompanied by subunit dissociation. J Biol Chem 263:15348–15353.

    PubMed  CAS  Google Scholar 

  • ai]Iyengar R, Rich KA, Herberg JT, Premont RT, Codina J (1988) Glucagon receptormediated activation of Gs is accompanied by subunit dissociation. J Biol ChemJahangeer S, Rodbell M (1993) The disaggregation theory of signal transduction revisited: further evidence that G-proteins are multimeric and disaggregate to monomers when activated. Proc Natl Acad Sci USA I (in press) 263:15348–15353.

    Google Scholar 

  • Kahn RA (1991) Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J Biol Chem 266:15595–15597.

    PubMed  CAS  Google Scholar 

  • Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, Reed RR, Gilman AG (1989) Adenylyl cyclase amino acid sequence: possible channel-or transporter-like structure. Science 244:1558–1564.

    Article  PubMed  CAS  Google Scholar 

  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L (1989) GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340:692–696.

    Article  PubMed  CAS  Google Scholar 

  • Levine HI, Sayhoun NE, Cuatrecasas P (1982) Properties of rat erythrocyte membrane cytoskeletal structures produced by digitonin extraction: digitonin insoluble β-adrenergic receptor, adenylate cyclase, and cholera toxin substrate. J Membrane Biol 64:225–231.

    Article  CAS  Google Scholar 

  • Levitzki A, Bar-Sinai A (1991) The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmac Ther 50:271–283.

    Article  CAS  Google Scholar 

  • Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, Rodbell M (1974) 5’-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc Natl Acad Sci USA 71:3087–3090.

    Article  PubMed  CAS  Google Scholar 

  • Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, Duh QY, Clark OH, Kawasaki E, Bourne HR, McCormick F (1990) Two G protein oncogenes in human endocrine tumors. Science 249:655–659.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Rodbell M (1990) Octyl glucoside extracts GTP-binding regulatory proteins from rat brain “synaptoneurosomes” as large, polydisperse structures devoid of beta gamma complexes and sensitive to disaggregation by guanine nucleotides. Proc Natl Acad Sci USA 87:6413–6417.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S, Rodbell M (1991) Glucagon induces disaggregation of polymer-like structures of the alpha subunit of the stimulatory G protein in liver membranes. Proc Natl Acad Sci USA 88:7150–7154.

    Article  PubMed  CAS  Google Scholar 

  • Neer EJ, Clapham DE (1988) Roles of G protein subunits in transmembrane signalling. Nature 333:129–134.

    Article  PubMed  CAS  Google Scholar 

  • Negishi M, Hashimoto H, Ichikawa A (1992) Translocation of alpha subunits of stimulatory guanine nucleotide-binding proteins through stimulation of the prostacyclin receptor in mouse mastocytoma cells. J Biol Chem 267: 2364–2369.

    PubMed  CAS  Google Scholar 

  • Ransnas LA, Insel PA (1988) Subunit dissociation is the mechanism for hormonal activation of the Gs protein in native membranes. J Biol Chem 263:17239–17242.

    PubMed  CAS  Google Scholar 

  • Ransnas LA, Svoboda P, Jasper JR, Insel PA (1989) Stimulation of beta-adrenergic receptors of S49 lymphoma cells redistributes the alpha subunit of the stimulatory G protein between cytosol and membranes. Proc Natl Acad Sci USA 86:7900–7903.

    Article  PubMed  CAS  Google Scholar 

  • Ransnas LA, Leiber D, Insel PA (1991) Inhibition of subunit dissociation and release of the stimulatory G-protein, Gs, by beta gamma-subunits and somatostatin in S49 lymphoma cell membranes. Biochem J 280:303–307.

    PubMed  Google Scholar 

  • Rendell M, Salomon Y, Lin MC, Rodbell M, Berman M (1975) The hepatic adenylate cyclase system. III. A mathematical model for the steady stat kinetics of catalysis and nucleotide regulation. J Biol Chem 250:4253–4260.

    PubMed  CAS  Google Scholar 

  • Rendell MS, Rodbell M, Berman M (1977) Activation of hepatic adenylate cyclase by guanyl nucleotides. Modeling of the transient kinetics suggests an “excited” state of GTPase is a control component of the system. J Biol Chem 252:7909–7912.

    PubMed  CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M (1991) G proteins may exist as polymeric proteins: a basis for the disaggregation theory of hormone action. In: Bellve AR, Vogel HJ (eds) Molecular mechanisms in cellular growth and differentiation. Academic Press, New York, pp 45–58.

    Google Scholar 

  • Rodbell M (1992) The role of GTP-binding proteins in signal transduction: from the sublimely simple to the conceptually complex. Curr Top Cell Regul 32:1–47.

    PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HM, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem 246:1872–1876.

    PubMed  CAS  Google Scholar 

  • Rodbell M, Lin MC, Salomon Y (1974) Evidence for interdependent action of glucagon and nucleotides on the hepatic adenylate cyclase system. J Biol Chem 249:59–65.

    PubMed  CAS  Google Scholar 

  • Rojas FJ, Birnbaumer L (1984) Regulation of glucagon receptor binding: lack of effect of Mg and preferential role for GDP. J Biol Chem 260:7829–7835.

    Google Scholar 

  • Sanford J, Codina J, Birnbaumer L (1991) Gamma-subunits of G proteins, but not their alpha-or beta-subunits, are polyisoprenylated. Studies on post-translational modifications using in vitro translation with rabbit reticulocyte lysates. J Biol Chem 266:9570–9579.

    PubMed  CAS  Google Scholar 

  • Schlegel W, Kempner ES, Rodbell M (1979) Activation of adenylate cyclase in hepatic membranes involves interactions of the catalytic unit with multimeric complexes of regulatory proteins. J Biol Chem 254:5168–5176.

    PubMed  CAS  Google Scholar 

  • Schlegel W, Cooper DM, Rodbell M (1980) Inhibition and activation of fat cell adenylate cyclase by GTP is mediated by structures of different size. Arch Biochem Biophys 201:678–682.

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta-gamma subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Ting TD, Ho YK (1991) Molecular mechanism of GTP hydrolysis by bovine transducin: pre-steady-state kinetic analyses. Biochemistry 30:8996–9007.

    Article  PubMed  CAS  Google Scholar 

  • Tolkovsky AM, Levitzki A (1978) Mode of Coupling between the beta-adrenergic receptor and adenylate cyclase in turkey erythrocytes. Biochemistry 17:3795–3810.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Umegaki K, Smith WL (1986) Association of a solubilized prostaglandin E2 receptor from renal medulla with a pertussis toxin-reactive guanine nucleotide regulatory protein. J Biol Chem 261:13430–13439.

    PubMed  CAS  Google Scholar 

  • Watson PA (1990) Direct stimulaton of adenylate cyclase by mechanical forces in S49 mouse lymphoma cells during hyposmotic swelling. J Biol Chem 269:6569–6975.

    Google Scholar 

  • Weinsein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM (1991) Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 325:1688–1695.

    Article  Google Scholar 

  • Welton AF, Lad PM, Newby AC, Yamamura H, Nicosia S, Rodbell M (1977) Solubilization and separation of the glucagon receptor and adenylate cyclase in guanine nucleotide-sensitive states. J Biol Chem 252:5947–5950.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodbell, M., Jahangeer, S., Coulter, S. (1993). G-Proteins Have Properties of Multimeric Proteins: An Explanation for the Role of GTPases in their Dynamic Behavior. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics