Skip to main content

Non-Perturbative Two-Dimensional Quantum Gravity and the Isomonodromy Method

  • Conference paper
Nonlinear Processes in Physics

Part of the book series: Springer Series in ((SSNONLINEAR))

  • 349 Accesses

Abstract

One of the main analytical achievements of the inverse spectral method is the implementation of global asymptotic analysis of the integrable nonlinear equations. This includes the explicit calculation of the asymptotics for the solution of the Cauchy problem, the explicit description of the connection formulae for the asymptotics in different regions, etc. The efficiency of the inverse spectral method for studying these questions was first demonstrated in the work of V.E. Zakharov and S.V. Manakov [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.E. Zakharov and S.V. Manakov, Asymptotical Behavior of Nonlinear Wave Systems Integrable by the Inverse Scattering Method, Zh. Exp. Teor. Fiz. 71, 203–215 (1976) (in Russian).

    MathSciNet  ADS  Google Scholar 

  2. A.R. Its, Asymptotics of Solutions of the Nonlinear Schrodinger Equation and Isomonodromic Deformations of Systems of Linear Differential Equations, Sov. Math. Dokl. 24, 452–456 (1981).

    MATH  Google Scholar 

  3. A.R. Its and V.Yu Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Springer Lect. Notes Math. 1191, (1986).

    Google Scholar 

  4. C. Itzykson and J.-B. Zuber, The Planar Approximation II, J. Math. Phys. 21 (3) (1980).

    Google Scholar 

  5. M. Douglas and S. Shenker, Strings in Less than One Dimension, Rutgers preprint RU-89–34.

    Google Scholar 

  6. D. Gross and A. Migdal, A Nonperturbative Treatment of Two-Dimensional Quantum Gravity, Princeton preprint PUPT-1159 (1989).

    Google Scholar 

  7. S.V. Manakov, On Complete Integrability and Stochastization in the Discrete Dynamical Systems, Zh. Exp. Teor. Fiz., 67, 2, 543–555 (1974).

    MathSciNet  ADS  Google Scholar 

  8. H. Flaschka, The Toda Lattice II. Inverse Scattering Solution, Prog. Theor. Phys. 51, 3, 703–716 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Kac and P. von Moerbeke, Advances in Math. 16, 160–164, (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Douglas, String in Less Than One Dimension and the Generalized KdV Hierarchies, Rutgers University preprint.

    Google Scholar 

  11. E. Witten, Two Dimensional Gravity and Intersection Theory on Modulli Space, IAS preprint, IASSNS-HEP-90/45.

    Google Scholar 

  12. Emil J. Martinec, On the Origin of Integrability in Matrix Models, preprint EFI-90–67.

    Google Scholar 

  13. A.R. Its, A.V. Kitaev and A.S. Fokas, Isomonodromic Approach in the Theory of Two-Dimensional Quantum Gravity, Usp. Matem. Nauk, 45, 6 (276), 135–136, (1990) (in Russian).

    MathSciNet  Google Scholar 

  14. A.R. Its and A.V. Kitaev, Mathematical Aspects of 2D Quantum Gravity, MPLA, 5, 25, 2079 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.S. Fokas, A.R. Its, and A.V. Kitaev, Discrete Painlevé Equations and Their Appearance in Quantum Gravity, Clarkson preprint, INS #164 (1990).

    Google Scholar 

  16. A.R. Its, A.V. Kitaev, and A.S. Fokas, The Matrix Models of the Two-Dimensional Quantum Gravity and Isomonodromic Solutions of the Discrete Painlevé Equations; A.V. Kitaev, Calculations of Nonperturbation Parameter in Matrix Model. Φ4, A.R. Its and A.V. Kitaev, Continuous Limit for Hermitian Matrix Model Φ6, in the book: Zap. Nauch. Semin. LOMI, 187, Differential Geometry, Li Groups and Mechanics, 12 (1991).

    Google Scholar 

  17. F. David, Loop Equations and Non-Perturbative Effects in TwoDimesnional Quantum Gravity, MPLA, 5, 13, 1019–1029 (1990).

    Article  ADS  MATH  Google Scholar 

  18. P.G. Silvestrov and A.S. Yelkhovsky, Two-Dimensional Gravity as Analytical Continuation of the Random Matrix Model, INP preprint 90–81, Novosibirsk, (1990).

    Google Scholar 

  19. G. Moore, Geometry of the String Equations, Commun. Math. Phys. 133, 261–304 (1990).

    Article  ADS  MATH  Google Scholar 

  20. G. Moore, Matrix Models of 2D Gravity and Isomonodromic Deformation, YCTP-P17–90, RU-90–53.

    Google Scholar 

  21. A.A. Kapaev, Weak Nonlinear Solutions of the P 21 Equation, Zap Nauch. Semin. LOMI, 187, Differential Geometry, Li Groups, and Mechanics, 12, p. 88 (1991).

    Google Scholar 

  22. S.P. Novikov, Quantization of Finite-Gap Potentials and Nonlinear Quasi-classical Approximation in Nonperturbative String Theory, Funkt. Analiz i Ego Prilozh., 24, 4, 43–53 (1990).

    Google Scholar 

  23. I.M. Krichever, On Heisenberg Relations for the Ordinary Linear Differential Operators, ETH preprint (1990).

    Google Scholar 

  24. A.A. Kapaev, Asymptotics of Solutions of the Painleve Equation of the First Kind, Diff. Equa., 24, 10, 1684 (1988) [in Russian].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fokas, A.S., Its, A.R., Kitaev, A.V. (1993). Non-Perturbative Two-Dimensional Quantum Gravity and the Isomonodromy Method. In: Fokas, A.S., Kaup, D.J., Newell, A.C., Zakharov, V.E. (eds) Nonlinear Processes in Physics. Springer Series in Nonlinear Dynamics . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77769-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77769-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77771-4

  • Online ISBN: 978-3-642-77769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics