Skip to main content

Metabolic Reactions: Role of Cytochrome P-450 in the Formation of Reactive Oxygen Species

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

The term “reactive oxygen” in reference to biological systems is not clearly defined. In this chapter it will be used in the sense of chemically activated oxygen, representing oxygen metabolites, mainly reduction products of oxygen, released from the cytochrome P-450 enzyme system. Reactive oxygen formed during the metabolic reaction of the cytochrome P-450 enzyme at the active site of the heme moiety will not be discussed here; the reader is referred to other chapters in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albano E, Tomasi A, Persson JO, Terelius Y, Goria-Gatti L, Ingelman-Sundberg M, Dianzani MU (1991) Role of ethanol-inducible cytochrome P-450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem Pharmacol 41: 1895–1902

    Article  PubMed  CAS  Google Scholar 

  • Al-Bayati ZAF, Stohs SJ (1987) The role of iron in 2,3,7,8-tetrachlorodibenzo-p- dioxin-induced lipid peroxidation by rat liver microsomes. Toxicol Letters 38: 115–121

    Article  CAS  Google Scholar 

  • Bast A, Goossens PAL, Savenije-Chapel EM (1989) Dependence of hydrogen peroxide formation in rat liver microsomes on the molecular structure of cytochrome P-450 substrates: a study with barbiturates and ß-adrenoceptor antagonists. Eur J Drug Metab Pharmacokin 14: 93–100

    Article  CAS  Google Scholar 

  • Blanck J, Ristau O, Zhukov, AA, Archakov AI, Rein H, Ruckpaul K (1991) Cytochrome P-450 spin state and leakiness of the monooxygenase pathway. Xenobiotica 21: 121–135

    Article  PubMed  CAS  Google Scholar 

  • Bosterling B, Stier A (1979) Reconstitution of cytochrome P-450 and cytochrome P-450 reductase into phosphatidylcholine-phosphatidylethanolamine bilayers: Characterization of structure and metabolic activity. Mol Pharmacol 16: 332–342

    PubMed  CAS  Google Scholar 

  • Cummings SW, Curtis BB, Peterson JA, Prough RA (1990) The effect of the tert-butylquinone metabolite of butylated hydroxyanisole on cytochrome P-450 monooxygenase activity. Xenobiotica 20: 915–924

    Article  PubMed  CAS  Google Scholar 

  • Davis HW, Suzuki T, Schenkman JB (1987) Oxidation of esterified arachidonate by rat liver microsomes. Arch Biochem Biophys 252: 218–228

    Article  PubMed  CAS  Google Scholar 

  • Duppel W, Ullrich V (1976) Membrane effects on drug monooxygenation activity in hepatic microsomes. Biochim Biophys Acta 426: 399–407

    Article  PubMed  CAS  Google Scholar 

  • Ekström G, Ingelman-Sundberg M (1986) Mechanisms of lipid peroxidation dependent upon cytochrome P-450 LM2. Eur J Biochem 158: 195–201

    Article  PubMed  Google Scholar 

  • Ekström G, Cronholm T, Ingelman-Sundberg M (1986) Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats. Biochem J 233: 755–761

    PubMed  Google Scholar 

  • Gerson RJ, Serroni A, Gilfor D, Ellen JM, Farber JL (1986) Killing of cultured hepatocytes by the mixed-function oxidation of ethoxycoumarin. Biochem Pharmacol 35: 4311–4319

    Article  PubMed  CAS  Google Scholar 

  • Goddard JG, Sweeney GD (1987) Delayed, ferrous iron-dependent peroxidation of rat liver microsomes. Arch Biochem Biophys 259: 372–381

    Article  PubMed  CAS  Google Scholar 

  • Golly I, Hlavica P, Schartau W (1988) The functional role of cytochrome b5 reincorporated into hepatic microsomal fractions. Arch Biochem Biophys 260: 232–240

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Letters 281: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1986) Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys 246: 501–514

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt AG, Roots I (1975) Reduced nicotinamide adenine dinucleotide phosphate ( NADPH) dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch Biochem Biophys 171: 385–397

    Article  CAS  Google Scholar 

  • Hildebrandt AG, Heinemeyer G, Roots I (1982) Stoichiometric cooperation of NADPH and hexobarbital in hepatic microsomes during the catalysis of hydrogen peroxide formation. Arch Biochem Biophys 216: 455–465

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Jamieson D (1989) Oxygen toxicity and reactive oxygen metabolites in mammals. Free Rad Biol Med 7: 87–108

    Article  PubMed  CAS  Google Scholar 

  • Jansson I, Schenkman JB (1986) Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P- 450. Drug Metab Dispos 15: 344–348

    Google Scholar 

  • Junqueira VBC, Simizu K, Videla LA, De Barros SB (1986) Dose-dependent study of the effects of acute lindane administration on rat liver superoxide anion production, antioxidant enzyme activities and lipid peroxidation. Toxicology 41: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Kahl R (1991) Protective and adverse biological actions of phenolic antioxidants. In: Sies H (ed) Oxidative stress: oxidants and antioxidants. Academic, London, pp 245–273

    Google Scholar 

  • Kahl R, Weinke S, Kappus H (1989) Production of reactive oxygen species due to metabolic activation of butylated hydroxyanisole. Toxicology 59: 179–194

    Article  PubMed  CAS  Google Scholar 

  • Kappus H (1985) Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance. In: Sies H (ed) Oxidative stress. Academic, London, pp 273–310

    Google Scholar 

  • Kappus H (1986) Overview of enzymes involved in bioreduction of drugs and in redox cycling. Biochem Pharmacol 35: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kappus H (1987) Oxidative stress in chemical toxicity. Arch Toxicol 60: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Kappus H (1991) Biochemical mechanisms of chemical-induced lipid peroxidation. In: Vigo-Pelfrey C (ed) Membrane mechanisms of chemical-induced lipid peroxidation II. CRC Press, Boca Raton, pp 104–119

    Google Scholar 

  • Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: Redox cycling and lipid peroxidation. Experientia 37: 1233–1241

    Google Scholar 

  • Kuthan H, Ullrich V (1982) Oxidase and oxygenase function of the microsomal cytochrome P-450. Eur J Biochem 126: 583–588

    Article  PubMed  CAS  Google Scholar 

  • Kuthan H, Tsuji H, Graf H, Ullrich V (1978) Generation of superoxide anion as a source of hydrogen peroxide in a reconstituted monooxygenase system. FEBS Letters 91: 343–345

    Article  PubMed  CAS  Google Scholar 

  • Lewis DFV, Ioannides C, Parke DV (1989) Molecular orbital studies of oxygen activation and mechanisms of cytochromes P-450-mediated oxidative metabolism of xenobiotics. Chem Biol Interactions 70: 263–280

    Article  CAS  Google Scholar 

  • Premereur N, van den Branden C, Roels F (1986) Cytochrome P-450-dependent H202 production demonstrated in vivo. FEBS Letters 199: 19–22

    Article  PubMed  CAS  Google Scholar 

  • Saito M (1990) Polychlorinated biphenyl-induced lipid peroxidation as measured by thiobarbituric acid-reactive substances in liver subcellular fractions of rats. Biochim Biophys Acta 1040: 301–308

    Article  Google Scholar 

  • Scholz W, Schütze K, Kunz W, Schwarz M (1990) Phenobarbital enhances the formation of reactive oxygen in neoplastic rat liver nodules. Cancer 50: 7015–7022

    CAS  Google Scholar 

  • Sies H (ed) (1991) Oxidative stress: oxidants and antioxidants. Academic, London

    Google Scholar 

  • Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Rad Biol Med 9: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Staudt H, Lichtenberger F, Ullrich V (1974) The role of NADH in uncoupled microsomal monooxygenations. Eur J Biochem 46: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Stohs SJ (1990) Oxidative stress induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Free Rad Biol Med 9: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Turner MJ, Fields CE, Everman DB (1991) Evidence for superoxide formation during hepatic metabolism of tamoxifen. Biochem Pharmacol 41: 1701–1705

    Article  PubMed  CAS  Google Scholar 

  • Urquhart AJ, Elder GH (1987) Hexachlorobenzene-induced oxygen activation by mouse liver microsomes: comparison with phenobarbitone and 20-methyl-cholanthrene. Biochem Pharmacol 36: 3795–3796

    Article  PubMed  CAS  Google Scholar 

  • van de Straat R (1987) Role of hepatic microsomal and purified cytochrome P-450 in one-electron reduction of two quinone imines and concomitant reduction of molecular oxygen. Biochem Pharmacol 36: 613–619

    Article  PubMed  Google Scholar 

  • van de Straat R, Vromans RM, Bosman P, de Vries J, Vermeulen NPE (1988) Cytochrome P-450-mediated oxidation of substrates by electron-transfer; role of oxygen radicals and of 1- and 2-electron oxidation of paracetamol. Chem Biol Interactions 64: 267–280

    Google Scholar 

  • Videla LA, Simizu K, Barros SBM, Junqueira VBC (1989) Lindane-induced liver oxidative stress: respiratory alterations and the effect of desferrioxamine in the isolated perfused rat liver. Cell Biochem Funct 7: 179–183

    Article  PubMed  CAS  Google Scholar 

  • Weiss RH, Estabrook RW (1986) The mechanism of cumene hydroperoxide-dependent lipid peroxidation: the function of cytochrome P-450. Arch Biochem Biophys 251: 348–360

    Article  PubMed  CAS  Google Scholar 

  • Yang CS (1977) The organization and interaction of monooxygenase enzymes in the microsomal membrane. Life Sci 21: 1047–1058

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappus, H. (1993). Metabolic Reactions: Role of Cytochrome P-450 in the Formation of Reactive Oxygen Species. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics