Skip to main content

Metabolic Reactions: Mechanisms of Substrate Oxygenation

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

A characteristic property of cytochrome P450 enzymes is their ability to react with a multitude of chemically very different substrates. Despite this fact, the basic mechanism of substrate oxygenation is the same for multiple forms and isozymes; it includes the energy-expensive process of molecular oxygen activation, splitting and formation of a very reactive oxygen species suited to oxidizing such chemically inert compounds as alkanes. The catalytic power of cytochrome P450 can be demonstrated by the thermodynamic parameters of the oxygenation process (Eq. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ariens J (1972) Drug design, vol 1. Academic Press, New York

    Google Scholar 

  • Atkins WM, Sligar SG (1987) Metabolic switching in cytochrome P-450cam: deuterium isotope effects on regiospecificitv and the monooxvgenase/oxidase ratio. J Am Chem Soc 109: 3754–3760

    CAS  Google Scholar 

  • Backes WL, Sligar SG, Schenkman JB (1980) Cytochrome P-450 reduction exhibits burst kinetics. Biochem Biophys Res Commun 97: 860–867

    PubMed  CAS  Google Scholar 

  • Backes WL, Sligar SG, Schenkman JB (1982) Kinetics of hepatic cytochrome P-450 reduction: correlation with spin state of the ferric heme. Biochemistry 21: 1324–1330

    PubMed  CAS  Google Scholar 

  • Backes WL, Tamburini PP, Jansson I, Gibson GG, Sligar SG, Schenkman JB (1985) Kinetics of cytochrome P-450 reduction: evidence for faster reduction of the high-spin ferric state. Biochemistry 24: 5130–5136

    PubMed  CAS  Google Scholar 

  • Bangcharoenpaurpong O, Rizos AK, Champion M (1986) Resonance Raman detection of bound dioxygen in cytochrome P-450cam. J Biol Chem 261: 8089–8092

    PubMed  CAS  Google Scholar 

  • Bjorkhem I (1977) Rate limiting step in microsomal cytochrome P-450 hydroxylations. Pharmacol Ther 1: 327–348

    CAS  Google Scholar 

  • Blanck J, Smettan G, Janig G-R, Ruckpaul K (1976) Kinetics of elementary steps in the cytochrome P-450 reaction sequence: I. Substrate binding to cytochrome P-450LM. Acta Biol Med Ger 35: 1455–1463

    CAS  Google Scholar 

  • Blanck J, Rein H, Sommer M, Ristau O, Smettan G, Ruckpaul K (1983) Correlations between spin equilibrium shift, reduction rate and N-demethylation activity in liver microsomal cytochrome P-450 and a series of benzphetamine analogues as substrates. Biochem Pharmacol 32: 1683–1688

    PubMed  CAS  Google Scholar 

  • Blanck J, Smettan G, Ristau O, Ingelman-Sundberg M, Ruckpaul K (1984) Mechanism of rate control of the NADPH dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipid vesicles. Eur J Biochem 144: 509–513

    PubMed  CAS  Google Scholar 

  • Blanck J, Ristau O, Zhukov AA, Archakov AI, Rein H, Ruckpaul K (1991) Cytochrome P-450 spin state and leakiness of the monooxygenase pathway. Xenobiotica 21: 121–135

    PubMed  CAS  Google Scholar 

  • Bonfils C, Debey P, Maurel P (1979) Highly purified microsomal cytochrome P-450: the oxyferro intermediate stabilized at low temperature. Biochem Biophys Res Commun 88: 1301–1307

    PubMed  CAS  Google Scholar 

  • Champion PM, Munck E, Debrunner P, Moss T, Lipscomb J, Gunsalus IC (1975) The magnetic susceptibility of reduced cytochrome P-450c.im. Biochim Biophys Acta 376: 579–582

    PubMed  CAS  Google Scholar 

  • Cinti DL, Sligar SG, Gibson GG, Schenkman J (1979) Temperature dependent spin equilibrium of microsomal and solubilized P-450 from rat liver. Biochemistry 18: 36–42

    PubMed  CAS  Google Scholar 

  • Collins JR, Loew GH (1988) Theoretical study of the product specificity in the hydroxylation of camphor, norcamphor, 5.5-difluorocamphor, and pericyclocamphanone by cytochrome P-450cam. J Biol Chem 263: 3164–3170

    PubMed  CAS  Google Scholar 

  • Dawson J, Trudell J, Linder R, Barth G, Bunnenberg E, Djerassi C (1978) Magnetic circular dichroism of purified forms of rabbit liver cytochromes P-450 and P-420. Biochemistry 17: 33–42

    PubMed  CAS  Google Scholar 

  • Estabrook RW, Hildebrandt AG, Baron J, Netter KJ, Leibman KC (1971) New spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochem Biophys Res Commun 42: 132–139

    PubMed  CAS  Google Scholar 

  • Fisher MT, Sligar SG (1985) Control of heme protein redox potential and reduction rate: linear free energy relation between potential and ferric spin state equilibrium. J Am Chem Soc 107: 5018–5019

    CAS  Google Scholar 

  • Fisher M, Sligar S (1987) Temperature jump relaxation kinetics of the P-450cam spin equilibrium. Biochemistry 26: 4797–4803

    PubMed  CAS  Google Scholar 

  • Franklin MR, Estabrook RW (1971) On the inhibitory action of meroalyl on microsomal drug oxidation: a rigid organization of the electron transport chain. Arch Biochem Biophys 143: 318–329

    PubMed  CAS  Google Scholar 

  • French JS, Guengerich FP, Coon MJ (1980) Interactions of cytochrome P-450, NADPH-cytochrome P-450 reductase, phospholipid, and substrate in the reconstituted liver microsomal enzyme system. J Biol Chem 255: 4112–4119

    PubMed  CAS  Google Scholar 

  • Gander JE, Mannering GJ (1980) Kinetics of hepatic cytochrome P-450-dependent monooxygenase systems. Pharmacol Ther 10: 191–221

    PubMed  CAS  Google Scholar 

  • Gelb MH, Heimbrook DC, Malkonen P, Sligar SG (1982) Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P-450cam monoxygenase system. Biochemistry 21: 370–377

    PubMed  CAS  Google Scholar 

  • Gibson GG, Tamburini PP (1984) Cytochrome P-450 spin state: inorganic biochemistry of haem iron ligation and functional significance. Xenobiotica 14: 27–47

    PubMed  CAS  Google Scholar 

  • Gillette JR, Brodie BB, LaDu BN (1957) The oxidation of drugs by liver microsomes: on the role of TPNH and oxygen. J Pharmacol Exp Ther 119: 532–540

    PubMed  CAS  Google Scholar 

  • Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. J Biol Chem 259: 6812–6817

    PubMed  CAS  Google Scholar 

  • Groves JT, Watanable Y, McMurry TJ (1983) Oxygen activation by metalloporphyrins: formation and decomposition of an acylperoxymanganese ( III) complex. J Am Chem Soc 105: 4489–4490

    Google Scholar 

  • Guengerich FP (1983) Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted system. Biochemistry 22: 2811–2820

    PubMed  CAS  Google Scholar 

  • Guengerich FP, Ballou DP, Coon MJ (1975) Purified liver microsomal cytochrome P-450. Electron-accepting properties and oxidation-reduction potential. J Biol Chem 250: 7405–7414

    Google Scholar 

  • Gustafsson JA, Rondahl L, Bergman J (1979) Iodosylbenzene derivatives as oxygen donors in cytochrome P-450 catalyzed steroid hydroxylations. Biochemistry 18: 865–870

    PubMed  CAS  Google Scholar 

  • Hanson LK, Eaton WA, Sligar SG, Gunsalus IC, Gouterman M, Connell CR (1976) Origin of the anomalous Soret spectra of carboxycytochrome P-450. J Am Chem Soc 98: 2672–2674

    PubMed  CAS  Google Scholar 

  • Havemann R, Haberditzl W (1958) Uber die Beziehungen zwischen magnetischen, optischen und chemischen Eigenschaften von Hamoglobinderivaten. Z Physiol Chem 209: 135–161

    CAS  Google Scholar 

  • Herman ZS, Loew GH (1980) A theoretical investigation of the magnetic and ground-state properties of model oxyhemoglobin complexes. J Am Chem Soc 102: 1815–1821

    CAS  Google Scholar 

  • Hildebrandt A, Estabrook RW (1971) Evidence for the participation of cytochrome b5 in hepatic microsomal mixed function oxidation reactions. Arch Biochem Biophys 143: 66–79

    PubMed  CAS  Google Scholar 

  • Hrycay EG, O’Brien PJ (1972) Cytochrome P-450 as a microsomal peroxidase in steroid hydroperoxide reduction. Arch Biochem Biophys 153: 480–494

    PubMed  CAS  Google Scholar 

  • Huang YY, Hara T, Sligar SG, Coon MJ, Kimura T (1986) Thermodynamic properties of oxidation-reduction reactions of bacterial, microsomal, and mitochondrial cytochromes P-450: an entropy-enthalpy compensation effect. Biochemistry 25: 1390–1394

    PubMed  CAS  Google Scholar 

  • Imai Y, Sato R (1977) The roles of cytochrome b5 in a reconstituted TV-demethylase system containing cytochrome P-450. Biochem Biophys Res Commun 75: 420–426

    PubMed  CAS  Google Scholar 

  • Imai M, Shimada H, Watanabe Y, Matsushima-Hibiya Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of the cytochrome P-450cam monooxygenase reaction by a single mutation, threonine-252 to alanine or valine: a possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sci USA 86: 7823–7827

    PubMed  CAS  Google Scholar 

  • Iyanagi T, Suzaki T, Kobayashi S (1981) Oxidation-reduction states of pyridine nucleotide and cytochrome P-450 during mixed-function oxidation in perfused rat liver. J Biol Chem 256: 12933–12939

    PubMed  CAS  Google Scholar 

  • Jansson I, Schenkman JB (1978) Influences of substrates of different microsomal electron transfer pathways on the oxidation-reduction kinetics of microsomal cytochrome b5. Arch Biochem Biophys 185: 251–261

    PubMed  CAS  Google Scholar 

  • Jansson I, Orrenius S, Ernster L, Schenkman JB (1972) A study of the interaction of a series of substituted barbituric acids with the hepatic microsomal monooxygenase. Arch Biochem Biophys 151: 391–400

    PubMed  CAS  Google Scholar 

  • Jansson I, Schenkman JB (1987) Influence of cytochrome b5 on the stoichiometry of the different oxidative reactions catalyzed by liver microsomal cytochrome P-450. Drug Metab Dispos 15: 344–348

    PubMed  CAS  Google Scholar 

  • Jung C (1980) Quantum chemical calculations of the carbon monooxide and dioxygen complex of cytochrome P-450 - a contribution to understand the spectral properties and the oxygen activation by cytochrome P-450 (in German). PhD thesis, Academy of Science of the GDR, East

    Google Scholar 

  • Berlin Jung C (1985) Quantum chemical explanation of the “hyper” spectrum of the carbon monoxide complex of cytochrome P-450. Chem Phys Lett 113: 589–596

    Google Scholar 

  • Jung C, Marlow F (1987) Dynamic behavior of the active site structure in bacterial cytochrome P-450. Stud Biophys 120: 241–251

    CAS  Google Scholar 

  • Jung C, Ristau O (1978) Mechanism of the cytochrome P-450 catalyzed hydro- xylation-thermodynamic aspects and the nature of the active oxygen species. Pharmazie 33: 329–331

    PubMed  CAS  Google Scholar 

  • Jung C, Friedrich J, Ristau O (1979) Quantum chemical interpretation of the spectral properties of the CO and O2 complexes of hemoglobin and cytochrome P-450. Acta Biol Med Ger 38: 363–377

    PubMed  CAS  Google Scholar 

  • Jung C, Ristau O, Rein H (1991) The high-spin/low-spin equilibrium in cytochrome P-450 - a new method for determination of high-spin content. Biochim Biophys Acta 1076: 130–136

    PubMed  CAS  Google Scholar 

  • Jung C, Scholl R, Frauenfelder H, Hui Bon Hoa G (1992) Structural multiplicity in the active center of cytochrome P-450. In: Archakov AI, Bachmanova GI (eds) Cytochrome P-450 Biochemistry and biophysics. Proceedings of the 7th international conference, INCO-TNC, Joint Stock Company. Moscow, pp 33–38

    Google Scholar 

  • Kassner RJ (1972) A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. J Am Chem Soc 95: 2674–2677

    Google Scholar 

  • Khenkin AM, Shteinman A A (1984) The mechanism of oxidation of alkanes by peroxo complexes of iron porphyrins in the presence of acylating agents: a model for activation of O2 by cytochrome P-450. J Chem Soc Chem Commun: 1219–1220

    Google Scholar 

  • Kuthan H, Ullrich V (1982) Oxidase and oxygenase function of the microsomal cytochrome P-450 monooxygenase system. Eur J Biochem 126: 583–588

    PubMed  CAS  Google Scholar 

  • Lambeth JD, Kriengsiri S (1985) Cytochrome P-450scc-adrenodoxin interactions. J Biol Chem 260: 8810–8816

    PubMed  CAS  Google Scholar 

  • Larroque C, Van Lier JE (1980) The subzero temperature stabilized oxyferro complex of purified cytochrome P-450scc. FEBS Lett 115: 175–177

    PubMed  CAS  Google Scholar 

  • Lewis DFV, Tamburini PP, Gibson GG (1986) The interaction of a homologous series of hydrocarbons with hepatic cytochrome P-450. Molecular orbital derived electronic and structural parameters influencing the haemoprotein spin state. Chem Biol Interact 58: 289–300

    Google Scholar 

  • Loew GH, Rohmer MM (1980) Electronic spectra of model oxy, carboxy P-450, and carboxy heme complexes. J Am Chem Soc 102: 3655–3657

    CAS  Google Scholar 

  • Martinis SA, Atkins WM, Stayton PS, Sligar SG (1989) A conserved residue of cytochrome P-450 is involved in heme-oxygen stability and activation. J Am Chem Soc 111: 9252–9253

    CAS  Google Scholar 

  • McCarthy MB, White RE (1983a) Competing modes of peroxyacid flux through cytochrome P-450. J Biol Chem 258: 11610–11616

    PubMed  CAS  Google Scholar 

  • McCarthy MB, White RE (1983b) Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate. J Biol Chem 258: 9153–9158

    PubMed  CAS  Google Scholar 

  • Misselwitz R, Janig G-R, Rein H, Buder E, Zirwer D, Ruckpaul K (1976) Differentation between type I and type II substrate binding to cytochrome P-450 by variation of temperature. Acta Biol Med Ger 35: K19–K25

    CAS  Google Scholar 

  • Misselwitz R, Janig G-R, Rein II, Buder E. Zirwer D, Ruckpaul K (1977) Substrate binding to solubilized cvtochrome P-450 from rabbits at different temperatures. Acta Biol Med Ger 36: K35–K41

    Google Scholar 

  • Mitani F, Horie S (1969) Studies on P-450: VI. The spin state of P-450 solubilized from bovine adrenocrotical mitochondria. J Biochem (Tokyo) 66: 139–149

    CAS  Google Scholar 

  • Narasimhulu S, Cooper DY, Rosenthal O (1965) Spcctrophotometric properties of a triton-clarificd steroid 21-hydroxvlase system of adrenocortical microsomes. Life Sci 4: 2101–2107

    Google Scholar 

  • Nordblom GD, Coon MJ (1977) ILO2 formation and stoichiometry of hydroxylation reactions catalyzed by highly purified liver microsomal cytochrome P-450. Arch Biochem Biophys 180: 343–347

    PubMed  CAS  Google Scholar 

  • Nordblom GD, White RE, Coon MJ (1976) Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch Biochem Biophys 175: 524–533

    PubMed  CAS  Google Scholar 

  • Oprian DD, Gorsky IJ, Coon MJ (1983) Properties of the oxygenated form of liver microsomal cytochrome P-450. J Biol Chem 258: 8684–8691

    Google Scholar 

  • Peterson J A, Ishimura Y, Griffin BW (1972) Pseudomonas putida cytochrome P-450: characterization of an oxygenated form of the hemoprotcin. Arch Biochem Biophys 149: 197–208

    PubMed  CAS  Google Scholar 

  • Peterson JA, Ebcl RE, O’Keefe OH, Matsubara T, Estabrook RW (1976) Temperature dependence of cytochrome P-450 reduction. A model for NADPH-cytochrome P-450 reductase: cytochrome P-450 interaction. J Biol Chem 251: 4010–4016

    PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6 A crystal structure of Pseudomonas putida cvtochrome P-450. J Biol Chem 260: 16122–16130

    PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Howard A.T (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25: 5314–5322

    PubMed  CAS  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1987) High-resolution crystal structure of cytochrome P-450cam. J Mol Biol 195: 687–700

    PubMed  CAS  Google Scholar 

  • Raag R, Poulos TL (1989) The structural basis for substrate-induced changes in redox potential and spin equilibrium in cvtochrome P-450cim. Biochemistry 28: 917–922

    PubMed  CAS  Google Scholar 

  • Raag R, Poulos TL (1991) Crystal structures of cytochrome P-450cam complexed with camphane, thiocamphor, and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry 30: 2674–2684

    PubMed  CAS  Google Scholar 

  • Rahimtula AD, O’Brien PJ, Hrycay EG, Peterson J A, Estabrook RW (1974) Possible higher valence states of cytochrome P-450 during oxidative reactions. Biochem Biophys Res Commun 60: 695–702

    PubMed  CAS  Google Scholar 

  • Rein H, Ristau O (1978) The importance of the high-spin low-spin equilibrium existing in cytochrome P-450 for the enzymatic mechanism. Pharmazie 33: 325–328

    PubMed  CAS  Google Scholar 

  • Rein H, Jänig G-R, Winkler W, Ruckpaul K (1976a) Circular dichroism of partially purified cytochrome P-450 from rabbit liver microsomes. Acta Biol Med Ger 35: K41–K50

    PubMed  Google Scholar 

  • Rein H, Maricic S, Jänig G-R, Vuk-Parlovic S, Benko B, Ristau O, Ruckpaul K (1976b) Haem accessibility in cytochrome P-450 from rabbit liver. A proton magnetic relaxation studv bv stereochemical probes. Biochim Biophvs Acta 446: 325–330

    Google Scholar 

  • Rein H, Ristau O, Friedrich J, Jänig G-R, Ruckpaul K (1977) Evidence for the existence of a high-spin low-spin equilibrium in liver microsomal cytochrome P-450. FEBS Lett 75: 19–22

    PubMed  CAS  Google Scholar 

  • Rein II, Ristau O, Misselwitz R, Buder E, Ruckpaul K (1979) The importance of the spin equilibrium in cvtochrome P-450 for the reduction rate of the heme iron. Acta Biol Med Ger 38: 187–200

    PubMed  CAS  Google Scholar 

  • Rein H, Ristau O, Ruckpaul K (1981) Molecular mechanism of the xenobiotica metabolizing enzyme cytochrome P-450. In: Gut I, Cikrt M. Plaa GL (eds) Industrial and environmental xenobiotics. Springer, Berlin Heidelberg New York, p 147

    Google Scholar 

  • Rein H, Jung C, Ristau O, Friedrich J (1984) Biophysical properties of cytochrome P-450. Analysis of the reaction mechanism - thermodynamic aspects. In: Ruckpaul K, Rein H (eds) Cytochrome P-450. structural and functional relationships, biochemical and physicochemical aspects of mixed function oxidases. Akadcmie, Berlin, pp 163–249

    Google Scholar 

  • Rein H, Jung C, Ristau O, Ruckpaul K (1986) Biological activation of oxygen. In: Shilov AE (ed) Homogeneous catalysis, vol 2. Gordon and Breach, New York, p 733

    Google Scholar 

  • Rein H, Ristau O, Blanck J, Ruckpaul K (1989) The spin-redox couplc as regulator of the catalytic activity of cytochrome P-450. In: Schuster I (ed) Cytochrome P-450: biochemistry and biophysics. Taylor and Francis, London, p 284

    Google Scholar 

  • Remmer H, Schenkman J, Estabrook RW, Sasame II, Gillette J, Narasimhulu S, Cooper DY, Rosenthal O (1966) Drug interaction with hepatic microsomal cytochrome. Mol Pharmacol 2: 187–190

    PubMed  CAS  Google Scholar 

  • Ristau O, Rein II, Janig G-R, Ruckpaul K (1978) Quantitative analysis of the spin equilibrium of cytochrome P-450 LM2 fraction from rabbit liver microsomes. Biochim Biophys Acta 536: 226–234

    PubMed  CAS  Google Scholar 

  • Ruckpaul K, Rein H, Blanck J (1989) Regulation mechanisms of the activity of the hepatic endoplasmic cytochrome P-450. In: Ruckpaul K, Rein 11 (eds) Frontiers in biotransformation. Akademie, Berlin, p 1

    Google Scholar 

  • Sasame HA, Gillette JR (1969) Studies on the relationship between the effects of various substances on absorption spectrum of cytochrome P-450 and the reduction of p-nitrobcnzoate by mouse liver microsomes. Mol Pharmacol 5: 123–130

    PubMed  CAS  Google Scholar 

  • Scheler W, Schoffa G, Jung F (1957) Lichtabsorption und paramagnctische Suszcptibilitat bei Dcrivaten des Pferde- und Chironomus-Methamoglobins sowie des Pferde-Metmyoglobins. Biochcm Z 329: 232–246

    CAS  Google Scholar 

  • Schenkman JB (1972) The effects of temperature and substrates on component reactions of the hepatic microsomal mixed-function oxidase. Mol Pharmacol 8: 178–188

    PubMed  CAS  Google Scholar 

  • Schenkman JB, Remmer II, Estabrook RW (1967) Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol Pharmacol 3: 113–123

    CAS  Google Scholar 

  • Schwarz D, Pirrwitz J, Rein H, Ruckpaul K (1984) Motional dynamics of a spin labeled substrate analogue bound to cytochrome P-450: saturation transfer EPR studies. Biomed Biochim Acta 43: 295–307

    PubMed  CAS  Google Scholar 

  • Schwarzc W, Blanck J, Ristau O, Janig G-R, Pommercning K, Rein H, Ruckpaul K (1985) Spin state control of cytochrome P-450 reduction and catalytic activity in a reconstituted P-450 LM2 system as induced by a series of benzphetamine analogues. Chem Biol Interact 54: 127–141

    Google Scholar 

  • Sharrock M, Münck E, Dcbrunner PG, Marshall V, Lipscomb JD, Gunsalus IC (1973) Mossbauer studies of cytochrome P-450cam. Biochemistry 12: 258–265

    PubMed  CAS  Google Scholar 

  • Sharrock M, Debrunner PG, Schulz C, Lipsomb JD, Mashall V, Gunsalus IC (1976) Cytochrome P-450cam and its complexes, Mossbauer parameters of the heme iron. Biochim Biophys Acta 420: 8–26

    Google Scholar 

  • Sies H, Kandel M (1970) Positive increase of redox potential of the extramitochondrial NADP(H) system by mixed function oxidations in hemoglobin free perfused rat liver. FLBS Lett 9: 205–210

    Google Scholar 

  • Sligar SG (1976) Coupling of spin, substrate and redox equilibria in cytochrome P-450. Biochemistry 15: 5399–5406

    PubMed  CAS  Google Scholar 

  • Sligar SG, Cinti DL, Gibson GG, Schenkman JB (1979) Spin state control of the hepatic cvtochrome P-450 redox potential. Biochem Biophvs Res Commun 90: 925–932

    CAS  Google Scholar 

  • Sligar SG, Kennedy KA, Pearson (1980) Chemical mechanisms for cytochrome P-450 hydroxylation: evidence for acylation of heme-bound dioxygen. Proc Natl Acad Sci USA 77 /3: 1240–1244

    CAS  Google Scholar 

  • Smith DW, Williams RJP (1968) Analysis of the visible spectra of some sperm-whale ferrimyoglobin derivatives. Biochem J 110: 297–301

    PubMed  CAS  Google Scholar 

  • Sugiyama T, Miki N, Yamano T (1980) NADH- and NADPH-dependent reconstituted p-nitroanisole O-demethylation system containing cytochrome P- 450 with high affinity for cytochrome b5. J Biochem (Tokyo) 87: 1457–1467

    CAS  Google Scholar 

  • Tamburini PP, Gibson GG (1983) Thermodynamic studies of the protein-protein interactions between cytochrome P-450 and cytochrome b5. Evidence for a central role of the cytochrome P-450 spin state in the coupling of substrate and cytochrome b5 binding to the terminal hemoprotein. J Biol Chem 258: 13444–134522

    Google Scholar 

  • Tamburini PP, Schenkman JB (1987) Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochromes P-450 isozyme 2 and b5 from rabbit liver. Proc Natl Acad Sci USA 84: 11–15

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Gibson GG, Backes WL, Sligar SG, Schenkman JB (1984) Reduction kinetics of purified rat liver cytochrome P450. Evidence for a sequential reaction mechanism dependent on the hemoprotein spin state. Biochemistry 23: 4526–4533

    Google Scholar 

  • Taniguchi H, Imai Y, Sato R (1984) Role of the electron transfer system in microsomal drug monooxygenase reaction catalyzed by cytochrome P-450. Arch Biochem Biophys 232: 585–596

    PubMed  CAS  Google Scholar 

  • Tuckey RC, Kamin H (1982) The oxyferro complex of adrenal cytochrome P-540scc: effect of cholesterol and intermediates on its stability and optical characteristics. J Biol Chem 257: 9309–9314

    PubMed  CAS  Google Scholar 

  • Unger B, Jollie D, Atkins W, Dabrowski M, Sligar S (1986) Site directed mutagenesis of cytochrome P-450. Fed Proc 45: 1874

    Google Scholar 

  • Vore M, Hamilton JG, Lu AYH (1974) Organic solvent extraction of liver microsomal lipid: I. The requirement of lipid for 3,4-benzpyrene hydroxylase. Biochem Biophys Res Commun 56: 1038–1044

    PubMed  CAS  Google Scholar 

  • Weiss JJ (1964) Nature of the iron-oxygen bond in oxyhemoglobin. Nature 202: 83–84

    PubMed  CAS  Google Scholar 

  • Weissbluth M (1974) Hemoglobin, cooperativity and electronic properties. Springer, Berlin Heidelberg New York

    Google Scholar 

  • White RE (1991) The involvement of free radicals in the mechanisms of monooxygenases. Pharmacol Ther 49: 21–42

    PubMed  Google Scholar 

  • White RE, Coon MJ (1980) Oxygen activation by cytochrome P-450. Annu Rev Biochem 49: 315–355

    PubMed  CAS  Google Scholar 

  • White RE, McCarthy M (1986) Active site mechanics of liver-microsomal cytochrome P-450. Arch Biochem Biophys 246: 19–32

    PubMed  CAS  Google Scholar 

  • White RE, Sligar SG, Coon MJ (1980) Evidence for a homolytic mechanism of peroxide oxygen-oxygen bond cleavage during substrate hydroxylation by cytochrome P-450. J Biol Chem 255: 11108–11111

    PubMed  CAS  Google Scholar 

  • White RE, McCarthy M, Egeberg KD, Sligar SG (1984) Regioselectivity in the cytochromes P-450: control by chemical reactivities. Arch Biochem Biophys 228: 493–502

    PubMed  CAS  Google Scholar 

  • Whysner JA, Ramseyer J, Harding BW (1970) Substrate-induced changes in visible absorption and electron spin resonance properties of adrenal cortex mitochondrial P-450. J Biol Chem 245: 5441–5449

    PubMed  CAS  Google Scholar 

  • Zhukov AA, Archakov AI (1982) Complete stoichiometry of free NADPH oxidation in liver microsomes. Biochem Biophys Res Commun 109: 813–818

    PubMed  CAS  Google Scholar 

  • Ziegler M, Blanck J, Ruckpaul K (1982) Spin equilibrium relaxation kinetics of cytochrome P-450 LM2. FEBS Lett 150: 219–222

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rein, H., Jung, C. (1993). Metabolic Reactions: Mechanisms of Substrate Oxygenation. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics