Skip to main content

Physiological Functions of Opioids:Temperature Regulation

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

Opiates and opioids have long been known to produce changes in body temperature. As with a wide variety of drugs from many different classes of pharmacological agents, the specific effect on body temperature is dependent on a number of factors such as the dose and route of administration of the drug, the species, strain, and age of animal, ambient temperature, and circadian rhythms. In addition, the degree of the restraint of the animal can alter the effects of opioids on body temperature. These and other factors have been addressed in a number of reviews and some will be mentioned below. Although less is known about the actions of opioids other than morphine on body temperature, there is increasing evidence that the endogenous opioid system (ligands and receptors) plays a role in thermoregulation in many animal species. This chapter will review much of this evidence and discuss ideas as to the function of specific receptor types based on our current knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler C, Keren O, Korczyn AD (1980) Tolerance to the mydriatic effects of morphine in mice. J Neural Transm 48:43–47

    PubMed  CAS  Google Scholar 

  • Adler CH, Robin M, Adler MW (1981) Tolerance to morphine-induced mydriasis in the rat pupil. Life Sci 28:2469–2475

    PubMed  CAS  Google Scholar 

  • Adler MW, Geller EB (1987) Hypothermia and poikilothermia induced by a κ-agonist opioid and a neuroleptic. Eur J Pharmacol 140:233–237

    PubMed  CAS  Google Scholar 

  • Adler MW, Hawk C, Geller EB (1983) Comparison of intraventricular morphine and opioid peptides on body temperature of rats. In: Lomax P, Schönbaum E (eds) Environment, drugs and thermoregulation. Karger, Basel, p 90

    Google Scholar 

  • Adler MW, Rowan CH, Geller EB (1984) Intracerebroventricular vs. subcutaneous drug administration: apples and oranges? Neuropeptides 5:73–76

    PubMed  CAS  Google Scholar 

  • Adler MW, Geller EB, Rowan CH, Pressman N (1986) Profound reversible hypothermia induced by the interaction of a kappa-agonist opioid and chlorpromazine. In: Cooper K, Lomax P, Schonbaum E, Veale WL (eds) Homeostasis and thermal stress. Karger, Basel, p 160

    Google Scholar 

  • Adler MW, Geller EB, Rosow CE, Cochin J (1988) The opioid system and temperature regulation. Annu Rev Pharmacol Toxicol 28:429–449

    PubMed  CAS  Google Scholar 

  • Adler MW, Bradley E, Martinez R, Geller EB (1991) Production of hypothermia in the guinea pig by a kappa-agonist opioid alone and in combination with chlorpromazine. Pharmacol Biochem Behav 40:129–132

    PubMed  CAS  Google Scholar 

  • Appelbaum BD, Holtzman SG (1985) Stress-induced changes in the analgesic and thermic effects of morphine administered centrally. Brain Res 358:303–308

    PubMed  CAS  Google Scholar 

  • Appelbaum BD, Holtzman SG (1986) Stress-induced changes in the analgesic and thermic effects of opioid peptides in the rat. Brain Res 377:330–336

    PubMed  CAS  Google Scholar 

  • Baldino F, Beckman AL, Adler MW (1980a) Effects of iontophoretically applied morphine on rat hypothalamic thermosensitive neurons. In: Cox B, Lomax P, Milton AS, Schönbaum E (eds) Thermoregulatory mechanisms and their therapeutic implications. Karger, Basel, p 157

    Google Scholar 

  • Baldino F Jr, Beckman AL, Adler MW (1980b) Actions of iontophoretically applied morphine on hypothalamic thermosensitive units. Brain Res 196:199–208

    PubMed  CAS  Google Scholar 

  • Beckman AL (1970) Effect of intrahypothalamic norepinephrine on thermoregulatory responses in the rat. Am J Physiol 218:1596–1604

    PubMed  CAS  Google Scholar 

  • Beckman AL, Carlisle HJ (1969) Effect of intrahypothalamic infusion of acetylcholine on behavioral and physiological thermoregulation in the rat. Nature 221:561–562

    PubMed  CAS  Google Scholar 

  • Beckman AL, Eisenman JS (1970) Microelectrophoresis of biogenic amines on hypothalamic thermosensitive cells. Science 170:334–336

    PubMed  CAS  Google Scholar 

  • Beckman AL, Llados-Eckman C (1985) Antagonism of brain opioid peptide action reduces hibernation bout duration. Brain Res 328:201–205

    PubMed  CAS  Google Scholar 

  • Beckman AL, Llados-Eckman C, Stanton TL, Adler MW (1981) Physical dependence on morphine fails to develop during the hibernating state. Science 212:1527–1529

    PubMed  CAS  Google Scholar 

  • Bejanian M, Pecknick RN, George R (1990) Effects of acute and chronic administration of (+)-SKF 10,047 on body temperature in the rat: crosssensitization with phencyclidine. J Pharmacol Exp Ther 253:1253–1258

    PubMed  CAS  Google Scholar 

  • Bejanian M, Pechnick RN, Bova MP, George R (1991) Effects of subcutaneous and intracerebroventricular administration of the sigma receptor ligand 1,3-di-otolylguanidine (DTG) on body temperature in the rat: interactions with BMY 14802 and Rimcazole. J Pharmacol Exp Ther 258:88–93

    PubMed  CAS  Google Scholar 

  • Benedek G, Szikszay M (1984) Potentiation of thermoregulatory and analgesic effects of morphine by calcium antagonists. Pharmacol Res Commun 16:1009–1018

    PubMed  CAS  Google Scholar 

  • Berkey DL, Meeuwsen KW, Barney CC (1990) Measurements of core temperature in spontaneously hypertensive rats by radiotelemetry. Am J Physiol 258:R743- R749

    PubMed  CAS  Google Scholar 

  • Bhargava HN (1982) Pharmacological responses to acute morphine administration in normotensive Wistar-Kyoto and spontaneously hypertensive rats. Life Sci 31:2463–2470

    PubMed  CAS  Google Scholar 

  • Bhargava HN, Gulati A, Poduri R (1989a) Effect of chronic administration of U-50,488H on tolerance to its pharmacological actions and on multiple opioid receptors in rat brain regions and spinal cord. J Pharmacol Exp Ther 251:21–26

    PubMed  CAS  Google Scholar 

  • Bhargava HN, Kremer EK, Gibbons MO, Philips BJ, Driver JW, Chou M (1989b) Stereospecific effects of a K-opiate antagonist on the actions of morphine in morphine-tolerant rats. Eur J PharmacoI173:159–164

    PubMed  CAS  Google Scholar 

  • Bläsig J, Höllt V, Bäuerle U, Herz A (1978) Involvement of endorphins in emotional hyperthermia of rats. Life Sci 23:2525–2532

    PubMed  Google Scholar 

  • Bläsig J, Bäuerle U, Herz A (1979) Endorphin-induced hyperthermia: characterization of the exogenously and endogenously induced effects. Naunyn Schmiedebergs Arch Pharmacol 309:137 -143

    PubMed  Google Scholar 

  • Blatteis CM (1981) The newer putative central neurotransmitters: roles in thermoregulation. Fed Proc 40:2735–2740

    PubMed  CAS  Google Scholar 

  • Bligh J (1973) Temperature regulation in mammals and other vertebrates. NorthHolland, Amsterdam

    Google Scholar 

  • Bloom AS, Tseng L-F (1981) Effects of β-endorphin on body temperature in mice at different ambient temperatures. Peptides 2:293–297

    PubMed  CAS  Google Scholar 

  • Bradley EA, Geller EB, Piliero T, Adler MW (1991) Actions of μ-selective opioid agonists and antagonists on body temperature in the rat. FASEB J 5:A961

    Google Scholar 

  • Briese E, DeQuijada MG (1970) Colonic temperature of rats during handling. Acta Physiol Lat Am 20:97–102

    PubMed  CAS  Google Scholar 

  • Brown SJ, Gisolfi CV, Mora F (1982) Temperature regulation and dopaminergic systems in the brain: does the substantia nigra playa role? Brain Res 234:275–286

    PubMed  CAS  Google Scholar 

  • Bruce DS, Cope GW, Elam TR, Ruit KA, Oeltgen PR, Su T-P (1987) Opioids and hibernation:I. Effects of naloxone on bear HIT’s depression of guinea pig ileum contractility and on induction of summer hibernation in the ground squirrel. Life Sci 41:2107–2113

    Google Scholar 

  • Burks TF (1991) Opioids and opioid receptors in thermoregulation. In: Schönbaum E, Lomax P (eds) Thermoregulation: pathology, pharmacology and therapy. Pergamon, New York, pp 489–509

    Google Scholar 

  • Burks TF, Rosenfeld GC (1979) Narcotic analgesics. In: Lomax P, Schönbaum E (eds) Body temperature. Dekker, New York, p 531

    Google Scholar 

  • Burks TF, Castro GA, Weisbrodt NW (1976) Tolerance to intestinal stimulatory actions of morphine. In: Kosterlitz HW (ed) Opiates and endogenous opioid peptides. Amsterdam, p 369

    Google Scholar 

  • Burks TF, Davis TP, McDougal IN (1983) Metabolism and thermopharmacology of opioid peptides in rat brain. In: Lomax P, Schönbaum E (eds) Environment, drugs and thermoregulation. Karger, Basel, p 94

    Google Scholar 

  • Cavicchini E, Candeletti S, Ferri S (1988) Effects of dynorphins on body temperature of rats. Pharmacol Res Commun 20:603–604

    PubMed  CAS  Google Scholar 

  • Cavicchini E, Candeletti S, Spampinato S, Ferris S (1989) Hypothermia elicited by some prodynorphin-derived peptides: opioid and non-opioid actions. Neuropeptides 14:45–50

    PubMed  CAS  Google Scholar 

  • Clark SM, Murphy MT, Lipton JM, Clark WG (1983) Effects of morphine on body temperature of squirrel monkeys of various ages. Brain Res Bull 10:305–308

    PubMed  CAS  Google Scholar 

  • Clark WG (1977) Emetic and hyperthermic effects of centrally injected methionineen kephalin in cats. Proc Soc Exp Bioi Med 154:540–542

    CAS  Google Scholar 

  • Clark WG (1979) Naloxone resistant changes in body temperature of the cat induced by intracerebroventricular injection of pentazocine. Gen Pharmacol 10:249–255

    PubMed  CAS  Google Scholar 

  • Clark WG (1981) Effects of opioid peptides on thermoregulation. Fed Proc 40:2754–2759

    PubMed  CAS  Google Scholar 

  • Clark WG, Bernardini GL (1981) β-Endorphin-induced hyperthermia in the cat. Peptides 2:371–373

    PubMed  CAS  Google Scholar 

  • Clark WG, Bernardini GL (1982) Morphine-induced hyperthermia: lack of crosstolerance with enkephalin analogs. Brain Res 231:231–234

    PubMed  CAS  Google Scholar 

  • Clark WG, Clark YL (1980) Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents. Neurosci Biobehav Rev 4:175–240

    PubMed  CAS  Google Scholar 

  • Clark WG, Harris NF (1978) Naloxone does not antagonize leukocytic pyrogen. Eur J Pharmacol 49:301–304

    PubMed  CAS  Google Scholar 

  • Clark WG, Lipton JM (1985a) Changes in body temperature after administration of acetylcholine, histamine, morphine, prostaglandins and related agents. Neurosci Biobehav Rev 9:479–552

    PubMed  CAS  Google Scholar 

  • Clark WG, Lipton JM (1985b) Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents. Neurosci Biobehav Rev 9:299–371

    PubMed  CAS  Google Scholar 

  • Clark WG, Ponder SW (1980a) Effects of centrally administered pentazocine and ethylketocyclazocine on thermoregulation in the cat. Brain Res Bull 5:615–618

    PubMed  CAS  Google Scholar 

  • Clark WG, Ponder SW (1980b) Thermoregulatory effects of (D-Ala2)-methionineen kephalin amide in the cat. Evidence for multiple naloxone-sensitive opioid receptors. Brain Res Bull 5:415–420

    Google Scholar 

  • Clark WG, Bernardini GL, Ponder SW (1981) Central injection of a (J opioid receptor agonist alters body temperature of cats. Brain Res Bull 7:279–281

    Google Scholar 

  • Clark WG, Bernardini GL, Ponder SW (1982) Extreme hyperthermia induced in cats by the en kephalin analog FK 33–824. Pharmacol Biochem Behav 16:1–5

    Google Scholar 

  • Clark WG, Pang I-H, Bernardini GL (1983) Evidence against involvement of ~endorphin in thermoregulation in the cat. Pharmacol Biochem Behav 18:741–745

    PubMed  CAS  Google Scholar 

  • Cox B, Lee TF (1980) Further evidence for a physiological role for hypothalamic dopamine in thermoregulation in the rat. J Physiol (Lond) 300:7–17

    CAS  Google Scholar 

  • Cox B, Ary M, Chesarek W, Lomax P (1976) Morphine hyperthermia in the rat: an action on the central thermostats. Eur J Pharmacol 36:33–39

    PubMed  CAS  Google Scholar 

  • Cox B, Lee T-F, Vale MJ (1979) Effects of morphine and related drugs on core temperature of two strains of rat. Eur J Pharmacol 54:27–36

    PubMed  CAS  Google Scholar 

  • Crawshaw LI (1972) Effects of intracerebral 5-hydroxytryptamine injection on thermoregulation in the rat. Physiol Behav 9:133–140

    PubMed  CAS  Google Scholar 

  • Crashaw LI (1973) Effect of intracranial acetylcholine injection on thermoregulatory responses in the rat. J Comp Physiol Psychol 83:32–35

    Google Scholar 

  • Cunningham CL, Crabbe JC, Rigter H (1984) Pavlovian conditioning of druginduced changes in body temperature. Pharmacol Ther 23:365–391

    Google Scholar 

  • Dafters RI, Taggart P (1990) Interaction of circadian rhythm and opiate-induced thermic and kinetic responses: a biotelemetric investigation. Life Sci 47:2155–2161

    PubMed  CAS  Google Scholar 

  • Eikelboom R (1987) Naloxone, naltrexone and body temperature. Life Sci 40:1027–1032

    PubMed  CAS  Google Scholar 

  • Eikelboom R, Stewart J (1981) Temporal and environmental cues in conditioned hypothermia and hyperthermia associated with morphine. Psychopharmacology 72:147–153

    PubMed  CAS  Google Scholar 

  • Estler CJ, Heim F (1962) The effect of morphine and N-allyl 3-hydroxymorphinan on function and metabolism of the mouse brain. J Neurochem 9:219–225

    PubMed  CAS  Google Scholar 

  • Feldberg W, Myers RD, Veale WL (1970) Perfusion from cerebral ventricle to cisterna magna in the unanesthetized cat. Effect of calcium on body temperature. J Physiol (Lon d) 207:403–416

    CAS  Google Scholar 

  • Funahashi M, Kohda H, Hori O, Hayashida H, Kimura H (1990) Potentiating effect of morphine upon d-methamphetamine-induced hyperthermia in mice. Effects of naloxone and haloperidol. Pharmacol Biochem Behav 36:345–350

    PubMed  CAS  Google Scholar 

  • Geller EB, Adler MW (1990) Drugs of abuse and body temperature. In: Adler MW, Cowan A (eds) Testing and evaluation of drugs of abuse. Wiley-Liss, NewYork, p 101

    Google Scholar 

  • Geller EB, Hawk C, Tallarida RJ, Adler MW (1982) Postulated thermoregulatory roles for different opiate receptors in rats. Life Sci 31:2241–2244

    PubMed  CAS  Google Scholar 

  • Geller EB, Hawk C, Keinath SH, Tallarida RJ, Adler MW (1983) Subclasses of opioids based on body temperature change in rats: acute subcutaneous administration. J Pharmacol Exp Ther 225:391–398

    PubMed  CAS  Google Scholar 

  • Geller EB, Rowan CH, Adler MW (1986) Body temperature effects of opioids in rats: intracerebroventricular administration. Pharmacol Biochem Behav 24:1761–1765

    PubMed  CAS  Google Scholar 

  • Geller EB, Martinez RP, Piliero T, Adler MW (1989) Use of selective opioid antagonists to separate components of the temperature response to [D-Ala2,NMePhe4 Gly5,-01] (DAGO). Pharmacologist 31:128

    Google Scholar 

  • Geller EB, Piliero T, Adler MW (1990a) Lack of evidence for a role of the delta receptor in temperature regulation in the rat. FASEB J 4:A881

    Google Scholar 

  • Geller EB, Piliero T, Bradley E, Adler MW (1990b) A delta opioid receptor agonist can modulate the temperature effects mediated by mu receptors in rats. Pharmacologist 32: 178

    Google Scholar 

  • Goldstein A, Lowery PJ (1975) Effect of the opiate antagonist naloxone on body temperature in rats. Life Sci 17:927–932

    PubMed  CAS  Google Scholar 

  • Gonzalez MC, Arevalo R, Castro R, Diaz-Palarea MD, Rodriguez M (1986) Different roles of intrahypothalamic and nigrostriatal dopaminergic systems in thermoregulatory responses of the rat. Life Sci 39:707–715

    PubMed  CAS  Google Scholar 

  • Gordon CJ (1990) Thermal biology of the laboratory rat. Physiol Behav 47:963–991

    PubMed  CAS  Google Scholar 

  • Gordon CJ, Heath JE (1981) Effect of beta-endorphin on the thermal excitability of preoptic neurons in the unanesthetized rabbit. Peptides 2:397–401

    PubMed  CAS  Google Scholar 

  • Gudelsky GA, Koenig JI, Meltzer HY (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Neuropharmacology 25:1307–1313

    PubMed  CAS  Google Scholar 

  • Gunne LM (1960) The temperature response in rats during acute and chronic morphine administration; a study of tolerance. Arch Int Pharmacodyn Ther 129:416–428

    PubMed  CAS  Google Scholar 

  • Gwosdow AR, Besch EL (1985) Adrenal and thyroid interactions of β-endorphininduced body temperature responses of rats at 24.5°C. Proc Soc Exp Bioi Med 178:412–418

    CAS  Google Scholar 

  • Hayes AG, Skingle M, Tyers MB (1985) Effect of β-funaltrexamine on opioid side-effects produced by morphine and U-50,488H. J Pharm Pharmacol 37:841–843

    PubMed  CAS  Google Scholar 

  • Hellon RF (1975) Monoamines, pyrogens and cations: their actions on central control of body temperature. Pharmacol Rev 26:289–321

    CAS  Google Scholar 

  • Hjorth S, Carlsson A, Clark D, Svensson K, Sanchez D (1985) Dopamine receptormediated hypothermia iinduced in rats by (+)-, but not by (—)-3-PPP. Eur J Pharmacol 107:299–304

    PubMed  CAS  Google Scholar 

  • Holaday JW, Faden AI (1980) Naloxone acts at central opiate receptors to reverse hypotension, hypothermia and hypoventilation in spinal shock. Brain Res 189:295–299

    PubMed  CAS  Google Scholar 

  • Holaday JW, Loh HH, Li CH (1978a) Unique behavioral effects of β endorphin and their relationship to thermoregulation and hypothalamic function. Life Sci 22: 1525–1536

    PubMed  CAS  Google Scholar 

  • Holaday JW, Wei E, Loh HH, Li CH (1978b) Endorphins may function in heat adaptation. Proc Natl Acad Sci USA 75:2923–2927

    PubMed  CAS  Google Scholar 

  • Holtzman SG, Villarreal JE (1969) Morphine dependence and body temperature in rhesus monkeys. J Pharmacol Exp Ther 166:125–133

    PubMed  CAS  Google Scholar 

  • Huidobro-Toro JP, Way EL (1980) Rapid development of tolerance to the hyperthermic effect of β-endorphin, and cross-tolerance between the enkephalins and β-endorphin. Eur J Pharmacol 65:221–231

    PubMed  CAS  Google Scholar 

  • Jacquet YF (1982) Opposite temporal changes after a single central administration of β-endorphin: tolerance and sensitization. Life Sci 30:2215–2219

    PubMed  CAS  Google Scholar 

  • Jorenby DE, Keesey RE, Baker TB (1989) Effects of dose on effector mechanisms in morphine-induced hyperthermia and poikilothermia. Psychopharmacology 98:269–274

    PubMed  CAS  Google Scholar 

  • Kandasamy SB, Williams BA (1983a) Peptide and non-peptide opioid-induced hyperthermia in rabbits. Brain Res 265:63–71

    PubMed  CAS  Google Scholar 

  • Kandasamy SB, Williams BA (1983b) Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig. Neuropharmacology 22:621–628

    PubMed  CAS  Google Scholar 

  • Kandasamy SB, Williams BA (1983c) Hyperthermic effects of centrally injected (D-Ala2,N-Me-Phe4, Met-(0)5 -ol)-enkephalin (FK 33–284) in rabbits and guineapigs. Neuropharmacology 22:1177–1181

    PubMed  CAS  Google Scholar 

  • Kapás L, Benedek G, Penke B (1989) Cholecystokinin interferes with the thermoregulatory effect of exogenous and endogenous opioids. Neuropeptides 14:85–92

    PubMed  Google Scholar 

  • Kasson BG, George R (1983) Thermoregulation in hyperthyroid rats: mechanism underlying the lack of hypothermic response to morphine in hyperthyroid animals. Life Sci 33:1845–1852

    PubMed  CAS  Google Scholar 

  • Kasson BG, George R (1984) Endocrine influences on the actions of morphine: IV. Effects of sex and strain. Life Sci 34:1627–1634

    PubMed  CAS  Google Scholar 

  • Kavaliers M, Hirst M (1984) The presence of an opioid system mediating behavioral thermoregulation in the terrestrial snail, Cepaea nemoralis. Neuropharmacology 23:1285–1289

    PubMed  CAS  Google Scholar 

  • Kavaliers M, Courtenay S, Hirst M (1984) Opiates influence behavioral thermoregulation in the curly-tailed lizard, Leiocephalus carinatus. Physiol Behav 32:221–224

    PubMed  CAS  Google Scholar 

  • Kirkpatrick WE, Lomax P (1970) Temperature changes following iontophoretic injection of acetylcholine into the rostral hypothalamus of the rat. Neuropharmacology 9: 195–202

    PubMed  CAS  Google Scholar 

  • Kittrell EMW, Satinoff E (1986) Development of the circadian rhythm of body temperature in rats. Physiol Behav 38:99–104

    PubMed  Google Scholar 

  • Konecka AM, Sadowski B, Jaszczak J, Panocka I, Sroczynska I, Misicka A (1982) The effect of intracerebroventricular infusion of morphine, methionineenkephalin and D-Ala2-met-enkephalinamide on body temperature of rabbits. Arch Int Physiol Biochem 90: 1–7

    CAS  Google Scholar 

  • Kramarova LI, Kolaeva SH, Yukhananov RY, Rozhanets VV (1983) Content of DSIP, enkephalins, and ACTH in some tissues of active and hibernating ground squirrels. Comp Biochem Physiol [C] 74:31–33

    CAS  Google Scholar 

  • Kramer TH, Shook JE, Kazmierski W, Ayres EA, Wire WS, Hruby VJ, Burks TF (1989) Novel peptidic mu opioid antagonists: pharmacologic characterization in vitro and in vivo. J Pharmacol Exp Ther 249:544–551

    PubMed  CAS  Google Scholar 

  • Lal H, Miksic S, Smith N (1976) Naloxone antagonism of conditioned hyperthermia: an evidence for release of endogenous opioid. Life Sci 18:971–976

    PubMed  CAS  Google Scholar 

  • Lee TF, Nurnberger F, Iourdan ML, Wang LCH (1989) Possible involvement of septum in seasonal changes in thermoregulatory responses to meten kephalin amide in ground squirrels. In:Lomax P, Schönbaum E (eds) Thermoregulation: research and clinical applications. Karger, Basel, p 200

    Google Scholar 

  • Lin MT (1982) An adrenergic link in the hypothalamic pathways which mediates morphine- and β-endorphin-induced hyperthermia in the rat. Neuropharmacology 21:613–617

    PubMed  CAS  Google Scholar 

  • Lin MT, Su CY (1979) Metabolic, respiratory, vasomotor and body temperature responses to beta-endorphin and morphine in rabbits. J Physiol (Lond) 295:179–189

    CAS  Google Scholar 

  • Lin MT, Chandra A, Su CY (1980) Naloxone produces hypothermia in rats pretreated with beta-endorphin and morphine. Neuropharmacology 19:435–441

    PubMed  CAS  Google Scholar 

  • Lin MT, Uang WN, Chan HK (1984) Hypothalamic neuronal responses to iontophoretic application of morphine in rats. Neuropharmacology 23:591–594

    PubMed  CAS  Google Scholar 

  • Lipton JM, Clark WG (1986) Neurotransmitters in temperature control. Annu Rev Physiol 48:613–623

    PubMed  CAS  Google Scholar 

  • Lomax P (1966) Measurement of ‘core’ temperature in the rat. Nature 210:854–855

    PubMed  CAS  Google Scholar 

  • Long NC, Vander AJ, Kluger MI (1990) Stress-induced rise of body temperature in rats is the same in warm and cool environments. Physiol Behav 47:773–775

    PubMed  CAS  Google Scholar 

  • Lotti VI, Lomax P, George R (1966a) Heat production and heat loss in the rat following intracerebral and systemic administration of morphine. Int J Neuropharmacol 5:75–83

    PubMed  CAS  Google Scholar 

  • Lotti VI, Lomax P, George R (1966b) Acute tolerance to morphine following systemic and intracerebral injection in the rat. Int J Neuropharmacol 5:35–42

    PubMed  CAS  Google Scholar 

  • Lund C, Benedict E (1929) The influence of the thyroid gland on the action of morphine. N Engl J Med 208:345–353

    Google Scholar 

  • Lynch TJ, Martinez RP, Furman MB, Geller EB, Adler MW (1987) A calorimetric analysis of body temperature changes produced in rats by morphine, methadone, and U50,488H. In: Harris LS (ed) Problems of drug dependence 1986. Natl Inst Drug Abuse Res Monogr Ser 76:82

    Google Scholar 

  • Lynch TJ, Furman MB, Martinez RP, Geller EB, Adler MW. Calorimetric comparison of hypothermia induced in rats by methadone, morphine, or the kappa agonist U-50,488H. 1 Pharmacol Exp Ther (in press)

    Google Scholar 

  • Martin GE, Bacino CB (1979) Action of intracerebrally injected β-endorphin on the rat’s core temperature. Eur J Pharmacol 59:227–236

    PubMed  CAS  Google Scholar 

  • Martin GE, Morrison IE (1978) Hyperthermia evoked by the intracerebral injection of morphine sulphate in the rat: the effect of restraint. Brain Res 145:127–140

    PubMed  CAS  Google Scholar 

  • Martin GE, Papp NL (1979) Effect on core temperature of restraint after peripherally and centrally injected morphine in the Sprague-Dawley rat. Pharmacol Biochem Behav 10:313–315

    PubMed  CAS  Google Scholar 

  • Martin GE, Pryzbylik AT, Spector NH (1977) Restraint alters the effects of morphine and heroin on core temperature in the rat. Pharmacol Biochem Behav 7:463–469

    PubMed  CAS  Google Scholar 

  • Maynert EW, Klingman GI (1962) Tolerance to morphine: I. Effects on catecholamines in the brain and adrenal glands. J Pharmacol Exp Ther 135:285–295

    PubMed  CAS  Google Scholar 

  • McCormack JF Denbow DM (1988) Feeding, drinking and temperature responses to intracerebroventricular β-endorphin in the domestic fowl. Peptides 9:709–715

    PubMed  CAS  Google Scholar 

  • McDougal IN, Marques PR, Burks TF (1981) Reduced tolerance to morphine thermoregulatory effects in senescent rats. Life Sci 28:137–145

    PubMed  CAS  Google Scholar 

  • McDougal IN, Marques PR, Burks TF (1983) Restraint alters the thermic response to morphine by postural interference. Pharmacol Biochem Behav 18:495–499

    PubMed  CAS  Google Scholar 

  • Meller E, Hizami R, Kreuter L (1989) Hypothermia in mice: D2 dopamine receptor mediation and absence of spare receptors. Pharmacol Biochem Behav 32:141–145

    PubMed  CAS  Google Scholar 

  • Menon MK, Gordon LI, Kodama CK, Fitten J (1988) Influence of D-l receptor system on the D-2 receptor-mediated hypothermic response in mice. Life Sci 43:871–881

    PubMed  CAS  Google Scholar 

  • Milanés MV, Del Rio-Garcia J, Cremades A, Vargas ML (1986) Effect of ACTH like peptides on morphine-induced hypothermia in unrestrained guinea pigs. Brain Res 375:13–19

    PubMed  Google Scholar 

  • Milanés MV, Del Rio-Garcia J, Cremades A, Fuente T (1990) Effects of morphine on plasma β-endorphin and cortisol levels and on body temperature in guineapigs pretreated with 6-hydroxydopamine. Gen Pharmacol 21:799–803

    PubMed  Google Scholar 

  • Miles GH (1962) Telemetering techniques for periodicity studies. Ann N Y Acad Sci 98:858–865

    Google Scholar 

  • Millan MJ, Morris BJ (1988) Long-term blockade of μ-opioid receptors suggests a role in control of ingestive behaviour, body weight and core temperature in the rat. Brain Res 450:247–258

    PubMed  CAS  Google Scholar 

  • Millan MJ, Przewlocki R, Jerlicz M, Gramsch CH, Höllt V, Herz A (1981) Stressinduced release of brain and pituitary β-endorphin: major role of endorphins in generation of hyperthermia, not analgesia. Brain Res 208:325–338

    PubMed  CAS  Google Scholar 

  • Moore NA, Axton MS (1990) The role of multiple dopamine receptors in apomorphine and N-n-propylnorapomorphine-induced climbing and hypothermia. Eur J Pharmacol 178:195–201

    PubMed  CAS  Google Scholar 

  • Morgane PJ, Panksepp J (1980) Behavioral studies of the hypothalamus, 3rd edn. Dekker, New York

    Google Scholar 

  • Morris RW (1980) Street drug interactions with ethyl alcohol circadian and lunar lethality rhythms. Life Sci 27:2577–2581

    PubMed  CAS  Google Scholar 

  • Morris RW, Lutsch EF (1969) Daily susceptibility rhythm to morphine analgesia. J Pharm Sci 58:374–376

    PubMed  CAS  Google Scholar 

  • Mucha RF, Kalant H, Kim C (1987) Tolerance to hyperthermia produced by morphine in the rat. Psychopharmacology 92:452–458

    PubMed  CAS  Google Scholar 

  • Muraki T, Kato R (1986) Strain difference in the effects of morphine on the rectal temperature and respiratory rate in male mice. Psychopharmacology 89:60–64

    PubMed  CAS  Google Scholar 

  • Muraki T, Kato R (1987) Genetic analysis of hypothermia induced by morphine in two strains of inbred mice. Pharmacol Biochem Behav 27:87–91

    PubMed  CAS  Google Scholar 

  • Muraki T, Nomoto T, Kato R (1988) Effects of the enkephalin analogue FK33–824 on rectal temperature and respiratory rate in male mice. Peptides 9:777–782

    PubMed  CAS  Google Scholar 

  • Murphy MT, Lipton JM (1983) β-Endorphin: effect on thermoregulation in aged monkeys. Neurobiol Aging 4:187 -190

    PubMed  CAS  Google Scholar 

  • Myers RD (1980) Catecholamines and the regulation of body temperature. In:Szekeres L (ed) Adrenergic activators and inhibitors. Springer, Berlin Heidelberg New York, p 549 (Handbook of experimental pharmacology, vol 54)

    Google Scholar 

  • Myers RD, Brophy PD (1972) Temperature changes in the rat produced by altering the sodium-calcium ratio in the cerebral ventricles. Neuropharmacology 11:351–361

    PubMed  CAS  Google Scholar 

  • Myers RD, Veale WL, Yaksh TL (1971) Changes in body temperature of the unanesthetized monkey produced by sodium and calcium ions perfused through the cerebral ventricles. J Physiol (Lond) 217:381–392

    CAS  Google Scholar 

  • Necker R (1984) Central thermosensitivity: CNS and extra-CNS. In: Hales JRS (ed) Thermal physiology. Raven, New York, p 53

    Google Scholar 

  • Nistico’ G, Rotiroti D, Naccari F, De Sarro GB, Marmo E (1980) Effects of intraventricular β-endorphin and D-Ala2-methionine-enkephalinamide on behavior, spectrum power of electrocortical activity and body temperature in chicks. Res Commun Chern Pathol Pharmacol 28:295–308

    Google Scholar 

  • Numan R, Lal H (1981) Effect of morphine on rectal temperature after acute and chronic treatment in the rat. Prog Neuropsychopharmacol 5:363–371

    PubMed  CAS  Google Scholar 

  • Oeltgen PR, Welborn JR, Nuchols PA, Spurrier WA, Bruce DS, Su T-P (1987) Opioids and hibernation: II. Effects of kappa opioid U69593 on induction of hibernation in summer-active ground squirrels by ‘hibernation induction trigger’ (HIT). Life Sci 41:2115–2120

    PubMed  CAS  Google Scholar 

  • Oeltgen PR, Nilekani SP, Nuchols PA, Spurrier WA, Su T-P (1988) Further studies on opioids and hibernation: delta opioid receptor ligand selectively induced hibernation in summer-active ground squirrels. Life Sci 43:1565–1574

    PubMed  CAS  Google Scholar 

  • Oka T, Negishi K (1977) Effect of neurohumoral modulators on the morphineinduced hyperthermia in non-tolerant rats. Eur J Pharmacol 42:225–229

    PubMed  CAS  Google Scholar 

  • Paolino RM, Bernard BK (1968) Environmental temperature effects on the thermoregulatory response to systemic and hypothalamic administration of morphine. Life Sci 7:857–863

    Google Scholar 

  • Pasternak GW, Wood PJ (1986) Minireview: multiple mu opiate receptors. Life Sci 38: 1889–1898

    PubMed  CAS  Google Scholar 

  • Pillai NP, Ross DH (1986a) Interaction of K receptor with Ca2+ channel antagonists in the modulation of hypothermia. Eur J Pharmacol 132:237–244

    PubMed  CAS  Google Scholar 

  • Pillai NP, Ross DH (1986b) Opiate receptor mediated hyperthermic responses in rat following Ca++ channel antagonists. Pharmacol Biochem Behavior 25:555–560

    CAS  Google Scholar 

  • Poole S, Stephenson JD (1977a) Core temperature: some shortcomings of rectal temperature measurements. Physiol Behav 18:203–205

    PubMed  CAS  Google Scholar 

  • Poole S, Stephenson JD (1977b) Body temperature regulation and thermo neutrality in rats. Q J Exp Physiol 62:143–149

    CAS  Google Scholar 

  • Quock RM, Vaughn LK, Barlament J, Wojcechowskyj JA (1985) Sex and strain differences in morphine-induced temperature effects in WKYs and SHRs. Brain Res Bull 14:323–326

    PubMed  CAS  Google Scholar 

  • Rand RP, Burton AC, Ing T (1965) The tail of the rat, in temperature regulation and acclimatization. Can J Physiol Pharmacol 43:257–267

    PubMed  CAS  Google Scholar 

  • Reichert ET (1904) The actions of certain agents upon the animal heat mechanisms, with especial reference to morphine. Univ Pa Med Bull 16:318–327

    Google Scholar 

  • Reinberg A, Smolen sky M (1983) Chronobiology and thermoregulation. Pharmacol Ther 22:425–464

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Heath JE (1984) Reduced thermal sensitivity in the rabbit by β-endorphin injection into the preoptic/anterior hypothalamus. Brain Res 292:297–302

    PubMed  CAS  Google Scholar 

  • Rezvani AH, Gordon CJ, Heath JE (1982) Action of preoptic injections of β-endorphin on temperature regulation in rabbits. Am J Physiol 243:R104-R111

    PubMed  CAS  Google Scholar 

  • Robson LE, Gillan MGC, Kosterlitz HW (1985) Species differences in the concentrations and distributions of opioid binding sites. Eur J Pharmacol 112:65–71

    PubMed  CAS  Google Scholar 

  • Rosenfeld GC, Burks TF (1977) Single-dose tolerance to morphine hypothermia in the rat: differentiation of acute from long-term tolerance. J Pharmacol Exp Ther 202:654–659

    PubMed  CAS  Google Scholar 

  • Rosow CE, Miller JM, Pelikan EW, Cochin J (1980) Opiates and thermoregulation in mice: I. Agonists. J Pharmacol Exp Ther 213:273–283

    PubMed  CAS  Google Scholar 

  • Rosow CE, Miller JM, Poulsen-Burke J, Cochin J (1982a) Opiates and thermoregulation in mice: III. Agonist-antagonists. J Pharmacol Exp Ther 220:468–475

    PubMed  CAS  Google Scholar 

  • Rosow CE, Miller JM, Poulsen-Burke J, Cochin J (1982b) Opiates and thermoregulation in mice: IV. Tolerance and cross-tolerance. J Pharmacol Exp Ther 223:702–708

    PubMed  CAS  Google Scholar 

  • Rothman RB, Bykov V, DeCosta BR, Jacobson AE, Rice KC, Brady LS (1990) Interaction of endogenous opioid peptides and other drugs with four kappa opioid binding sites in guinea pig brain. Peptides 11:311–331

    PubMed  CAS  Google Scholar 

  • Rudy TA, Yaksh TL (1977) Hyperthermic effects of morphine: set point manipulation by a direct spinal action. Br J Pharmacol 61:91–96

    PubMed  CAS  Google Scholar 

  • Saunders DR, Paolino RM, Bousquet WF, Miya TS (1974) Age-relatedresponsiveness of the rat to drugs affecting the central nervous system. Proc Soc Exp Bioi Med 147:593–595

    CAS  Google Scholar 

  • Schwarz KS, Cunningham CL (1990) Conditioned stimulus control of morphine hyperthermia. Psychopharmacology 101:77–84

    PubMed  CAS  Google Scholar 

  • Sherman JE (1979) The effects of conditioning and novelty on the rat’s analgesic and pyretic responses to morphine. Learn Motiv 10:383–418

    Google Scholar 

  • Siegel S (1978) Tolerance to the hyperthermic effect of morphine in the rat is a learned response. J Comp Physiol Psychol 92:1137–1149

    PubMed  CAS  Google Scholar 

  • Siren A-L, Paakkari P, Goldstein DS, Feuerstein G (1989) Mechanisms of central hemodynamic and sympathetic regulation by mu opioid receptors: effects of dermorphin in the conscious rat. J Pharmacol Exp Ther 248:596–604

    PubMed  CAS  Google Scholar 

  • Spencer RL, Ayres EA, Burks TF (1985) Temperature responses in restrained and unrestrained rats to the selective mu opioid agonist, DAGO. Proc West Pharmacol Soc 28:107–110

    PubMed  CAS  Google Scholar 

  • Spencer RL, Hruby VJ, Burks TF (1988) Body temperature response profiles for selective mu, delta, and kappa opioid agonists in restrained and unrestrained rats. J Pharmacol Exp Ther 246:92–101

    PubMed  CAS  Google Scholar 

  • Spencer RL, Hruby VJ, Burks TF (1990) Alteration of thermoregulatory set point with opioid agonists. J Pharmacol Exp Ther 252:696–705

    PubMed  CAS  Google Scholar 

  • Spratto GR, Dorio RE (1978) Effects of age on acute morphine response in the rat. Res Commun Chern Pathol Pharmacol 19:23–36

    CAS  Google Scholar 

  • Stanier MW, Mount LE, Bligh J (1984) Energy balance and temperature regulation. Cambridge University Press, Cambridge

    Google Scholar 

  • Stanton TL, Sartin NF, Beckman AL (1985) Changes in body temperature and metabolic rate following microinjection of met-enkephalinamide in the preoptic/anterior hypothalamus of rats. Regul Pept 12:333–343

    PubMed  CAS  Google Scholar 

  • Szikszay M, Benedek G (1986) Thermoregulatory effects of opiates: changes due to environmental and pharmacological challenges. In: Cooper K, Lomax P, Schönbaum E, Veale W (eds) Homeostasis and thermal stress. Karger, Basel, p 170

    Google Scholar 

  • Szikszay M, Benedek G (1989) Sensitization or cross-tolerance to morphine after different types of chronic stress. Adv Biosci 75:735–738

    CAS  Google Scholar 

  • Szikszay M, Benedek G, Székely J-I (1983) Thermoregulatory effects of D-Met2-Pro5-enkephalinamide. Neuropeptides 3:465–475

    PubMed  CAS  Google Scholar 

  • Tanaka M, Tsuda A, Ida Y, Ushijima I, Tsujimaru S, Nagasaki N (1985) Statedependent effects of β-endorphin on core temperature in stressed and nonstressed rats. Jpn J Pharmacol 39:395–397

    PubMed  CAS  Google Scholar 

  • Tepperman FS, Hirst M (1983) Effect of intrahypothalamic injection [D-Ala2, D-Leu5]enkephalin on feeding and temperature in the rat. Eur J Pharmacol 96:243–249

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Desautels M (1984) Is acute morphine hyperthermia of unrestrained rats due to selective activation of brown adipose tissue thermogenesis? J Pharmacol Exp Ther 231:422–429

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Saunders WS (1984) Thermoregulatory (core, surface, and metabolic) responses of unrestrained rats to repeated POAH injections of β-endorphin or adrenocorticotropin. Peptides 5:713–719

    PubMed  CAS  Google Scholar 

  • Thornhill JA, West NH (1984) Opiate modulation of thermoregulation in adult Pekin ducks. Can J Physiol Pharmacol 62:288–295

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Wilfong A (1982) Lateral cerebral ventricle and preoptic-anterior hypothalamic area infusion and perfusion of β-endorphin and ACTH to unrestrained rats: core and surface temperature responses. Can J Physiol Pharmacol 60:1267–1274

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Hirst M, Gowdey CW (1978) Measurement of diurnal core temperatures of rats in operant cages by AM telemetry. Can J Physiol Pharmacol 56:1047–1050

    PubMed  CAS  Google Scholar 

  • Thornhill LA, Cooper KE, Veale WL (1980) Core temperature changes following administration of naloxone and naltrexone to rats exposed to hot and cold ambient temperatures. Evidence for the physiological role of endorphins in hot and cold acclimatization. J Pharm Pharmacol 32:427–430

    PubMed  CAS  Google Scholar 

  • Tiberi M, Magnan J (1989) Pharmacological characterization of the binding of [3H]-bremazocine in guinea-pig brain: evidence for multiplicity of the κ-opioid receptors. Can J Physiol Pharmacol 67: 1336–1344

    PubMed  CAS  Google Scholar 

  • Trzcinka GP, Lipton JM, Hawkins M, Clark WG (1977) Effects on temperature of morphine injected into the preoptic/anterior hypothalamus, medulla oblongata, and peripherally in unrestrained and restrained rats. Proc Soc Exp Bioi Med 156:523–526

    CAS  Google Scholar 

  • Tseng L-F, Ostwald TJ, Loh HH, Li CH (1979) Behavioral activities of opioid peptides and morphine sulfate in golden hamsters and rats. Psychopharmacology 64:215–218

    PubMed  CAS  Google Scholar 

  • Tseng L-F, Wei ET, Loh HH, Li CH (1980) β-Endorphin: central sites of analgesia, catalepsy and body temperature changes in rats. J Pharmacol Exp Ther 214:328–332

    PubMed  CAS  Google Scholar 

  • Ushijima I, Tanaka M, Tsuda A, Koga S, Nagasaki N (1985) Differential effects ofmorphine on core temperature in stressed and non-stressed rats. Eur J Pharmacol 112:331–337

    PubMed  CAS  Google Scholar 

  • Vezina P, Stewart J (1985) Hyperthermia induced by morphine administration to the VTA of the rat brain: an effect dissociable from morphine-induced reward and hyperactivity. Life Sci 36: 1095–1105

    PubMed  CAS  Google Scholar 

  • Wang LCH, Lee TF, Jourdan ML (1987) Seasonal difference in thermoregulatory responses to opiates in a mammalian hibernator. Pharmacol Biochem Behav 26:565–571

    PubMed  CAS  Google Scholar 

  • Weiss J, Thompson ML, Shuster L (1984) Effects of naloxone and naltrexone on drug-induced hypothermia in mice. Neuropharmacology 23:483–489

    PubMed  CAS  Google Scholar 

  • Widdowson PS, Griffiths EC, Slater P (1983) Body temperature effects of opioids administered into the periaqueductal grey area of rat brain. Regul Pept 7:259–267

    PubMed  CAS  Google Scholar 

  • Wüster M, Schulz R, Herz A (1980) The direction of opioid agonists towards μ, δ-and ε-receptors in the vas deferens of the mouse and the rat. Life Sci 27:163–170

    PubMed  Google Scholar 

  • Zarrindast MR, Oveissi Y (1988) GABAA and GABAB receptor sites involvement in rat thermoregulation. Gen Pharmacol 19:223–226

    PubMed  CAS  Google Scholar 

  • Zelman DC, Tiffany ST, Baker TB (1985) Influence of stress on morphine-induced hyperthermia: relevance to drug conditioning and tolerance development. Behav Neurosci 9:122–144

    Google Scholar 

  • Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain κ opioid receptors: evidence for κl and κ2 opioid receptors. Proc Natl Acad Sci USA 85:4061–4065

    PubMed  CAS  Google Scholar 

  • Zwil AS, Lynch TJ, Martinez RP, Geller EB, Adler MW (1988) Calorimetric analysis of ICV morphine in the rat. Natl Inst Drug Abuse Res Monogr Ser 81:285

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adler, M.W., Geller, E.B. (1993). Physiological Functions of Opioids:Temperature Regulation. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics