Skip to main content

The Linear Assignment Problem

  • Conference paper
Combinatorial Optimization

Part of the book series: NATO ASI Series ((NATO ASI F,volume 82))

Abstract

We present a broad survey of recent polynomial algorithms for the linear assignment problem. They all use essentially alternating trees and/or strongly feasible trees. Most of them employ Dijkstra’s shortest path algorithm directly or indirectly. When properly implemented, each has the same complexity: O(n 3) for dense graphs with simple data structures and O(n 2 log n + nm) for sparse graphs using Fibonacci Heaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Achatz, P. Kleinschmidt, and K. Paparrizos, A dual forest algorithm for the assignment problem, Tech. Rep., Universität Passau, Germany, 1989.

    Google Scholar 

  2. R.K. Ahuja and J.B. Orlin, Improved primal simplex algorithms for shortest path, assignment and minimum cost flow problems, Working Paper OR 189–88, M. I. T. 1988

    Google Scholar 

  3. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows, in, Optimization, Handbooks in Operations Research and Management Science Vol. 1, Eds., G.L. Nemhauser, A.H.G. Rinnoy Kan, and M.J. Todd, ( Nort-Holland, New York, 1989 ).

    Google Scholar 

  4. R.K. Ahuja, K. Mehlhorn, J.B. Orlin, and R.E. Tarjan, Faster Algorithms for the Shortest Path Problem, Journal of ACM 37 (1990) 213–223.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Akgiil, Topics in Relaxation and Ellipsoidal Methods,(Pitman, London, 1984. Research Notes in Mathematics Vol. 97.)

    Google Scholar 

  6. M. Akgül, A genuinely polynomial primal simplex algorithm for the assignment problem,Technical Report, North Carolina State University, 1985, and Working Paper IEOR 87–07, Bilkent University, 1987. (To appear in Discrete Applied Mathematics)

    Google Scholar 

  7. M. Akgiil, A sequential dual simplex algorithm for the linear assignment problem, Operations Research Letters 7 (1988) 155–158.

    Article  MathSciNet  Google Scholar 

  8. M. Akgiil, Shortest paths and the simplex method, Working Paper IEOR-8804, Bilkent University, 1988.

    Google Scholar 

  9. M. Akgiil and O. Ekin, A dual feasible forest algorithm for the assignment problem,Working Paper IEOR 90–11, Bilkent University, 1990. (to appear in RAIRO)

    Google Scholar 

  10. M. Akgiil, A forest primal-dual algorithm for the assignment problem, Working Paper IEOR 90–14, Bilkent University, 1990.

    Google Scholar 

  11. M. Akgiil, A faster version of Hung-Rom algorithm for the assignment problem, Working Paper IEOR 90–16, Bilkent University, 1990.

    Google Scholar 

  12. M. Akgiil and O. Ekin, A criss-cross algorithm for the assignment problem, Working Paper IEOR 90–22, Bilkent University, 1990.

    Google Scholar 

  13. A.I. Ali, R.V. Helgason, J.L. Kennington, and H.S. Lall, Primal simplex network codes: state-of-the-art implementation technology, Networks 8 (1978) 315–339.

    Article  MathSciNet  Google Scholar 

  14. J. Araoz and J. Edmonds, A case of non-convergent dual changes in assignment problems, Discrete Applied Mathematics 11 (1985) 95–102

    Article  MathSciNet  MATH  Google Scholar 

  15. M.L. Balinski, Signature method for the assignment problem, Operations Research 33 (1985) 527–536. Presented at Mathematical Programming Symposium, Bonn 1982.

    Google Scholar 

  16. M.L. Balinski, A competitive (dual) simplex method for the assignment problem, Mathematical Programming 34 (1986) 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.L. Balinski and R.E. Gomory, A primal method for the assignment and transportation problems, Management Science 10 (1964) 578–598.

    Article  Google Scholar 

  18. R.S. Barr, F. Glover, and D. Klingman, The alternating basis algorithm for assignment problems, Mathematical Programming 13 (1977) 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Bertsekas, A new algorithm for the assignment problem, Mathematical Programming 21 (1981) 152–157.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Bertsekas, P.A. Hosein, and P. Tseng, Relaxation methods for network flow problems, SIAM J. Control & Optimization 25 (1987) 1219–1243.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Bertsekas, The auction algorithm: a distributed relaxation method for the assignment problem, Annals of Operations Research 14 (1988) 105–123.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.B. Bixby, Matroids and operations research,in Advanced Techniques in the Practice of Operations Research, H.J. Greenberg et. al., ed., (North-Holland, 1982) 333459.

    Google Scholar 

  23. G.H. Bradley G.G. Brown G.W. Graves, Design and implementation of large scale primal transshipment algorithms, Management Science 24 (1977) 1–34.

    Article  MATH  Google Scholar 

  24. R.E. Burkard, Travelling salesman and assignment problems: a survey, Annals of Discrete Mathematics 4 (1979) 193–215.

    Article  MathSciNet  Google Scholar 

  25. R.E. Burkard, W. Hahn, and W. Zimmermann, An algebraic approach to assignment problems, Mathematical Programming 12 (1977) 318–327.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Carpaneto and P. Toth, Primal-dual algorithms for the assignment problem, Discrete Applied Mathematics 18 (1987) 137–153.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Carraresi and C. Sodini, An efficient algorithm for the bipartite matching problem, EJOR 23 (1986) 86–93.

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Chvátal, Linear Programming,(Freeman, San Francisco, 1983.)

    Google Scholar 

  29. W.H. Cunningham, A network simplex method, Mathematical Programming 11 (1976) 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  30. W.H. Cunningham, Theoretical properties of the network simplex method, Mathematics of Operations Research 4 (1979) 196–208.

    Article  MathSciNet  MATH  Google Scholar 

  31. W.H. Cunningham and A.B. Marsh, A primal algorithm for optimum matching, Mathematical Programming Study 8 (1978) 50–72.

    MathSciNet  Google Scholar 

  32. G.B. Dantzig, Linear Programming and Extensions,(Princeton University Press, Princeton, 1963.)

    Google Scholar 

  33. E. Denardo and B. Fox, Shortest-route methods: 1. reaching, pruning, buckets, Operations Research 27 (1979) 161–186.

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Deo and C. Pang, Shortest path algorithms: taxonomy and annotation, Networks 14 (1984) 275–323.

    Article  MathSciNet  MATH  Google Scholar 

  35. U. Derigs, The shortest augmenting path method for solving assignment problems—motivation and computational experience,Annals of Operations Research 4 (1985/6) 57–102.

    Google Scholar 

  36. R. Dial, Algorithm 360: shortest path forest with topological ordering, Communications of ACM 12 (1965) 632–633.

    Article  Google Scholar 

  37. R. Dial, F. Glover, D. Karney, and D. Klingman, A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees, Networks 9 (1979) 215–248.

    Article  MathSciNet  MATH  Google Scholar 

  38. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 (1959) 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  39. E.A. Dinic and M.A. Kronrod, An algorithm for the solution of the assignment problem, Soviet Mathematics Doklady 10 (1969) 1324–1326.

    MATH  Google Scholar 

  40. S. Dreyfus, An appraisal of some shortest path algorithms, Operations Research 17 (1969) 396–412.

    Article  Google Scholar 

  41. J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic e fficiency for network flow problems, Journal of ACM 19 (1972) 248–264.

    Article  MATH  Google Scholar 

  42. M. Engquist, A successive shortest path algorithm for the assignment problem, Infor 20 (1982) 370–384.

    MATH  Google Scholar 

  43. L.R. Ford and D.R. Fulkerson, Flows in Networks,(Princeton University Press, Princeton, 1962.)

    Google Scholar 

  44. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, Journal of ACM 34 (1987) 596–615 Also in Proc. 25’th FOCS (1984) 338–346.

    Google Scholar 

  45. J. Gilsinn and C. Witzgall, A performance comparison of labeling algorithms for calculating shortest path trees, Tech. Rep. 772, Washington, D.C., 1973.

    Google Scholar 

  46. F. Glover and D. Karney, Implementation and computational comparisons of primal, dual, primal-dual codes for minimum cost network flow problems, Networks 4 (1977) 191–212.

    Article  Google Scholar 

  47. F. Glover, R. Glover, and D. Klingman, Threshold assignment algorithm, Mathematical Programming Study 25 (1986) 12–37.

    MathSciNet  Google Scholar 

  48. D. Goldfarb, Efficient dual simplex algorithms for the assignment problem, Mathematical Programming 37 (1985) 187–203.

    Article  MathSciNet  Google Scholar 

  49. D. Goldfarb, J. Hao, and S. Kai, Efficient Shortest Path Simplex Algorithms, Operations Research 38 (1990) 624–628.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Gondran and M. Minoux, Graphs and Algorithms,(Wiley, New York, 1984.)

    Google Scholar 

  51. M.S. Hung, A polynomial simplex method for the assignment problem, Operations Research 31 (1983) 595–600.

    Article  MathSciNet  MATH  Google Scholar 

  52. M.S. Hung and W.O. Rom, Solving the assignment problem by relaxation, Operations Research 27 (1980) 969–982.

    Article  Google Scholar 

  53. E. Johnson, On shortest paths and sorting, in Proc. 25’th conference of ACM, Boston, 1972, 529–539.

    Google Scholar 

  54. E.L. Johnson, Flows in networks, in Handbook of Operations Research, J.J. Moder amp; S.E. Elmaghraby, ed., Von Nostrand, 1978.

    Google Scholar 

  55. R. Jonker and A. Volgenant, Improving the Hungarian assignment algorithm, Operations Research Letters 58 (1986) 171–176.

    Article  MathSciNet  Google Scholar 

  56. R. Jonker and A. Volgenant, A shortest path algorithm for dense and sparse linear assignment problems, Computing 38 (1987) 325–340.

    Article  MathSciNet  MATH  Google Scholar 

  57. P. Kleinschmidt, C. Lee, and H. Schannath, Transportation problems which can be solved by the use hirsch-paths for the dual problems, Mathematical Programming 37 (1987), 153–168.

    Article  MathSciNet  MATH  Google Scholar 

  58. H.W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics Quarterly 2 (1955) 83–97.

    Article  MathSciNet  Google Scholar 

  59. J. Munkres, Algorithms for the assignment and transportation problems, SIAM Journal 5 (1957) 32–38.

    MathSciNet  MATH  Google Scholar 

  60. W.M. Nawijn and B. Dorhout, On the expected number of assignments in reduced matrices for the linear assignment problem, Operations research Letters 8 (1989) 329–336.

    Article  MathSciNet  MATH  Google Scholar 

  61. E. Lawler, Combinatorial Optimization: Networks and matroids, (Holt, Rinehart and Winston, New York, 1976 ).

    Google Scholar 

  62. E. Lawler, Shortest path and network algorithms, Annals of Discrete Mathematics 4 (1979) 251–265.

    Article  MathSciNet  MATH  Google Scholar 

  63. J.B. Orlin, On the simplex algorithm for networks and generalized networks, Mathematical Programming Study 24 (1985) 166–178.

    MathSciNet  MATH  Google Scholar 

  64. J.B. Orlin and R.K. Ahuja, New scaling algorithms for the assignment and minimum cycle mean problems, Working Paper OR 178–88, M. I. T. 1988.

    Google Scholar 

  65. C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms & Complexity,(Prentice-Hall, Englewood Cliffs, 1982.)

    Google Scholar 

  66. K. Paparrizos, A non-dual signature method for the assignment problem and a generalization of the dual simplex method for the transportation problem, RAIRO Operations Research 22 (1988) 269–289.

    MathSciNet  MATH  Google Scholar 

  67. K. Paparrizos, An infeasible (exterior point) simplex algorithm for assignment problems,Mathematical Programming (to appear)

    Google Scholar 

  68. K. Paparrizos, A relaxation Column signature method for assignment problems, EJOR 50 (1991) 211–219.

    Article  MATH  Google Scholar 

  69. K. Paparrizos, Generalization of a signature method to transportation problems, Technical Report, Democritus University of Thrace, 1990.

    Google Scholar 

  70. A. Pierce, Bibliography on algorithms for shortest path, shortest spanning tree and related circuit routing problems, Networks 5 (1975) 129–143.

    MathSciNet  MATH  Google Scholar 

  71. R.T. Rockafellar, Network Flows and Monotropic Optimization,(Wiley, New York, 1984.)

    Google Scholar 

  72. Roohy-Laleh, Improvements to the theoretical efficiency of the simplex method,PhD thesis, University of Charleton, Ottawa, 1981. Dissertation Abstract International vol.43, August 1982 p.448B.

    Google Scholar 

  73. D.D. Sleator and R.E. Tarjan, A data structure for dynamic trees, Journal of Computer and System Sciences 26 (1983) 362–391.

    Article  MathSciNet  MATH  Google Scholar 

  74. V. Srinivasan and G.L. Thompson, Accelerated algorithms for labeling and relabeling of trees, with applications to distribution problems, Journal of ACM 19 (1972) 712–726.

    Article  MATH  Google Scholar 

  75. V. Srinivasan and G.L. Thompson, Benefit-cost analysis for coding techniques for the primal transportation problem, Journal of ACM 20 (1973) 184–213.

    Article  Google Scholar 

  76. V. Srinivasan and G.L. Thompson, Cost operator algorithms for the transportation problem, Mathematical Programming 12 (1977) 372–391.

    Article  MathSciNet  MATH  Google Scholar 

  77. R.E. Tarjan, Data Structures and Network Algorithms,(SIAM, Philadelphia, 1983.)

    Google Scholar 

  78. T. Terlaky, A convergent criss-cross method, Mathematische Operationsfurchung and Statistics ser. Optimization 16 (1985), 683–690.

    Article  MathSciNet  MATH  Google Scholar 

  79. G.L. Thompson, A recursive method for the assignment problems, Annals of Discrete Mathematics 11 (1981) 319–343.

    MATH  Google Scholar 

  80. C. Witzgall, On labeling algorithms for determining shortest paths in networks, Tech. Rep. 9840, Washington, D.C., 1968.

    Google Scholar 

  81. N. Tomizawa, On some techniques useful for solution of transportation network problems, Networks 1 (1972) 173–194.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akgül, M. (1992). The Linear Assignment Problem. In: Akgül, M., Hamacher, H.W., Tüfekçi, S. (eds) Combinatorial Optimization. NATO ASI Series, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77489-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77489-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77491-1

  • Online ISBN: 978-3-642-77489-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics