Skip to main content

A Parallelism Between Quantum Gravity and the IR Limit in QCD (Emergence of Hadron and Nuclear Symmetries)

  • Conference paper
Symmetries in Physics
  • 164 Accesses

Abstract

In the non-perturbative IR region, the action of QCD contains a long-range component, acting as an effective “strong gravity”. It is generated by the exchange of a color neutral pair of gluons \( {G_{{\mu \nu }}}(x) \sim {\eta_{{ab}}}B_{\mu }^{\alpha }(x)B_{\nu }^b(x) \) The G μν acts formally as a Riemannian metric with J P = O +, 2+ quanta coupled symmetrically to nuclear matter and generating the IBM paradigm, Regge trajectories and the string-like features of hadrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arima and F. Iachello, Phys. Rev. Lett. 35 (1975) 1069

    Article  ADS  Google Scholar 

  2. ib., Ann. Phys. 99 (1976) 253

    Article  ADS  Google Scholar 

  3. A. Arima and F. Iachello, Ann. Phys. 111 (1978) 201

    Article  ADS  Google Scholar 

  4. A. Arima and F. Iachello, Ann. Phys. 123 (1979) 468

    Article  ADS  Google Scholar 

  5. F. Iachello and I. Talmi, Rev. Mod. Phys. 54 339 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  6. See for example C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation (W.H. Freeman and Co. Publ., San Francisco, 1973) Sect. 36.1.

    Google Scholar 

  7. J.P. Elliott, Proc. Roy. Soc. A245 (1958) 128,

    ADS  Google Scholar 

  8. J.P. Elliott, Proc. Roy. Soc. A245 (1958) 562

    ADS  Google Scholar 

  9. J.P. Elliott and M. Harvey, Proc. Roy. Soc. A272 (1963) 557.

    ADS  Google Scholar 

  10. Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys. Lett. 17 (1965) 148.

    Article  ADS  MathSciNet  Google Scholar 

  11. L. Weaver and L.C. Biedenharn, Phys. Lett. 32B (1970) 326

    ADS  Google Scholar 

  12. L. Weaver and L.C. Biedenharn, Nucl. Phys. A185 (1972) 1.

    ADS  Google Scholar 

  13. H. Ui, Prog. Theor, Phys. 44 (1970) 153

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. L. Weaver, L.C. Biedenharn, and R.Y. Cusson, Ann. Phys. 77 (1973) 250.

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Goshen and H.J. Lipkin, Ann. Phys. 6 (1959) 301; D.J. Rowe, in Dynamical Groups and Spectrum Generating Algebras, A. Bohm, Y. Ne’eman, and A.O. Barut editors, World Scientific, Singapore (1989), p. 287

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Rosensteel and D.J. Rowe, Phys. Rev. Lett. 47 (1981) 223

    Article  ADS  Google Scholar 

  17. J.P. Draayer and K.J. Weeks, Phys. Rev. Lett. 51 (1983) 1422.

    Article  ADS  Google Scholar 

  18. C.J. Isham, A. Salam, and J. Strathdee, Phys. Rev. D8 (1973) 2600

    ADS  Google Scholar 

  19. ibid. D9 (1974) 1702

    ADS  Google Scholar 

  20. ibid. Lett. N. Cimento 5 (1972) 969.

    Article  MathSciNet  Google Scholar 

  21. M. Gell-Mann, Phys. Rev. 125 (1962) 1067, footnote on p. 38

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. P.G.O. Freund, Phys. Lett. 2 (1962) 136.

    Article  ADS  Google Scholar 

  23. T. Yoneya, Prog. Theor. Phys. 51 (1974) 1907

    Article  ADS  Google Scholar 

  24. J. Scherk and J.H. Schwarz, Nucl. Phys. B81 (1974) 118.

    Article  ADS  Google Scholar 

  25. G. Veneziano, Lett N Cimento A57 (1968) 190.

    Article  ADS  Google Scholar 

  26. D.W. Joseph, University of Nebraska preprint, unpublished (1969); Y. Ne’eman, Ann. Inst. H. Poincaré 28 (1978) 639

    MathSciNet  Google Scholar 

  27. Y. Ne’eman and Dj. Sijacki, Int. J. Mod. Phys. A2 (1987) 1655.

    ADS  MathSciNet  Google Scholar 

  28. Y. Ne’eman, Nucl. Phys. 26, (1961) 222; M. Gell-Mann, Report CTSL-20, unpublished.

    Article  MathSciNet  Google Scholar 

  29. M. Gell-Mann and Y. Ne’eman, The Eightfold Way (W.A. Benjamin, NY, 1964).

    Google Scholar 

  30. C.N. Yang and R.J. Oakes, Phys. Rev. Lett. 125 (1963) 1067.

    Google Scholar 

  31. Y. Ne’eman, Phys. Rev. 134 (1965) B1355.

    Article  MathSciNet  Google Scholar 

  32. Y. Ne’eman, Nucl. Phys. (Proc. Supp. Sec.) B13 (1990) 582.

    Article  ADS  Google Scholar 

  33. Y. Ne’eman and Dj. Sijacki, Phys. Lett. 157B, 267 (1985)

    ADS  MathSciNet  Google Scholar 

  34. Y. Ne’eman and Dj. Sijacki, ib. Phys. Rev. D37, 3267 (1988).

    ADS  MathSciNet  Google Scholar 

  35. Dj. Šijački, and Y. Ne’eman, Phys. Lett. B247 (1990) 571.

    Google Scholar 

  36. Y. Ne’eman and T. Regge, Riv. N. Cimento Ser. 3, 1 (1978) 5.

    MathSciNet  Google Scholar 

  37. J. Thierry-Mieg and Y. Ne’eman, Ann. Phys. (NY) 123 (1979) 247.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. K.S. Stelle, Phys. Rev. D16 (1977) 953.

    ADS  MathSciNet  Google Scholar 

  39. See for example J. Kiskis, Phys. Rev. D11 (1975) 2178

    ADS  Google Scholar 

  40. G.B. West, Phys. Lett. 115B (1982) 468.

    ADS  Google Scholar 

  41. F.W. Hehl, Y. Ne’eman, J. Nisch, and P. v.d. Heyde, Phys. Lett. B78 (1978) 102; P. Baeckler and F.W. Hehl, in From SU(3) to Gravity, E. Gotsman and G. Tauber editors (Cambridge University Press, Cambridge, 1985), p. 341.

    ADS  Google Scholar 

  42. S. Deser and A.N. Redlich, Phys. Lett. 176B (1986) 350.

    ADS  MathSciNet  Google Scholar 

  43. E.S. Fradkin and A.A. Tseytlin, Phys. Lett. B158 (1985) 316.

    ADS  MathSciNet  Google Scholar 

  44. A.D. Sakharov, Dokl. Akad, Nauk SSSR 171 (1967) 70

    ADS  Google Scholar 

  45. S.L. Adler, Rev. Mod. Phys., 54 (1982) 729

    Article  ADS  Google Scholar 

  46. A. Zee, Phys. Rev. D23 (1981) 858.

    ADS  Google Scholar 

  47. V.I. Ogievetsky, Lett. N. Cimento 8 (1973) 988.

    Article  MathSciNet  Google Scholar 

  48. F.W. Hehl and Y. Ne’eman, “Spacetime as a Continuum with Microstructure and Metric-Affine Gravity”, to be published in Ivananko Festschrift, World Scientific Publ.

    Google Scholar 

  49. J. Pecina-Cruz, J. Lemke, and Y. Ne’eman, to be published.

    Google Scholar 

  50. M. Perroud, J. Math. Phys. 24 (1983) 1381.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. Dj. Šijački, and Y. Ne’eman, J. Math. Phys. 16 (1985) 2457.

    Google Scholar 

  52. Dj. Šijački, and Y. Ne’eman, Phys. Lett. B250 (1990) 1.

    Google Scholar 

  53. H.J. Lipkin, Nucl. Phys. A350 (1980) 16.

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ne’eman, Y. (1992). A Parallelism Between Quantum Gravity and the IR Limit in QCD (Emergence of Hadron and Nuclear Symmetries). In: Frank, A., Wolf, K.B. (eds) Symmetries in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77284-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77284-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77286-3

  • Online ISBN: 978-3-642-77284-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics