Skip to main content

Myocardial Dysfunction in Experimental Septic Shock

  • Chapter
Pathophysiology of Shock, Sepsis, and Organ Failure
  • 570 Accesses

Abstract

The behavior of the heart in experimental shock models using slow or bolus infusion of endotoxin [26, 29, 30, 32, 44, 55, 79] or live bacteria [31, 61], splanchnic artery occlusion [45, 69] pancreatitis [8], or peritonitis [61, 68, 94] continues to be the subject of intense debate in the research community. The role of the heart in septic shock can be defined by answering the following questions:

  1. 1.

    Does the heart fail in septic shock and, if so, when does it fail?

  2. 2.

    Does the heart initiate cardiovascular collapse? Is the heart the primary target organ responsible for the development of cardiovascular failure during septic shock, or is it the peripheral circulation?

  3. 3.

    Does changed cardiac function during septic shock indicate myocardial dysfunction or is this due to complex functional adjustment of an otherwise “normal” heart to the altered milieu in which it is forced to contract?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel FL, Kessler DP (1973) Myocardial performance in hemorrhagic shock in the dog and primate. Circ Res 32:492–500.

    PubMed  CAS  Google Scholar 

  2. Abel FL (1976) Comparative evaluation of pressure and time factors in estimating left ventricular performance. J Appl Physiol 40:196–205.

    PubMed  CAS  Google Scholar 

  3. Abel FL (1981) Maximal negative dP/dt as an indicator of end of systole. Am J Physiol 240:H676–H679.

    PubMed  CAS  Google Scholar 

  4. Adams HR, Baxter CR, Parker JL, Watts NB (1984) Contractile function and rhythmicity of cardiac preparations from escherichia coli endotoxin-shocked guinea pigs. Circ Shock 13:241–253.

    PubMed  CAS  Google Scholar 

  5. Adams HR, Baxter CR, Parker JL (1985) Reduction of intrinsic contractile reserves of the left ventricle by escherichia coli endotoxin shock in guinea-pigs. J Mol Cell Cardiol 17:575–585.

    PubMed  CAS  Google Scholar 

  6. Adams HR, Parker JL, Laughlin MH (1990) Intrinsic myocardial dysfunction during endotoxemia: dependent or independent of myocardial ischemia? Circ Shock 30:63–76.

    PubMed  CAS  Google Scholar 

  7. Adler D, Mahler Y, Rogel S (1980) Evaluation of time-dependent and quantitative properties of contraction from left ventricular pressure. Basic Res Cardiol 75:683–695.

    PubMed  CAS  Google Scholar 

  8. Altimari AF, Prinz RA, Leutz DW, Sandberg BA, Kober PM, Raymond RM (1986) Myocardial depression during acute pancreatitis: fact or fiction? Surgery 100:724–731.

    PubMed  CAS  Google Scholar 

  9. Alyono D, Larson VE, Anderson RW (1985) Defining end systole for endsystolic pressure-volume ratio. J Surg Res 39:344–350.

    PubMed  CAS  Google Scholar 

  10. Archer LT (1985) Myocardial dysfunction in endotoxin-and E. coli-induced shock: pathophysiological mechanisms. Circ Shock 15:261–280.

    PubMed  CAS  Google Scholar 

  11. Artman M, Jackson JD, Boucek RJ, Graham TP, Boerth RC (1986) Effects of endotoxin on coronary vascular resistance in the isolated blood-perfused rabbit heart. Circ Shock 19:13–22.

    PubMed  CAS  Google Scholar 

  12. Aversano T, Maughan WL, Hunter WC, Kass D, Becker LC (1986) End-systolic measures of regional ventricular performance. Circulation 73:938–950.

    PubMed  CAS  Google Scholar 

  13. Baan J, Jong TTA, Kerkhof PLM, Moene RJ, van Dijk AD, van der Velde ET, Koops J (1981) Continuous stroke volume and cardiac output with intra-ventricular dimensions obtained from impedance catheter. Cardiovasc Res 15:328–334.

    PubMed  CAS  Google Scholar 

  14. Baan J, van der Velde ET, de Bruin HG, Smeenk GJ, Koops J, van Dijk AD, Temmerman D, Senden J, Buis B (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823.

    PubMed  CAS  Google Scholar 

  15. Bogen DK, Ariel Y, McMahon TA, Gaasch WH (1985) Measurement of peak systolic elastance in intact canine circulation with servo pump. Am J Physiol 249:H585–H593.

    PubMed  CAS  Google Scholar 

  16. Boltwood CM, Appleyard RF, Glantz SA (1989) Left ventricular volume measurement by conductance catheter in intact dogs. Parallel conductance volume depends on left ventricular size. Circulation 80:1360–1377.

    PubMed  Google Scholar 

  17. Broughton A, Korner PI (1980) Steady-state effects of preload and afterload on isovolumic indices of contractility in autonomically blocked dogs. Cardiovasc Res 14:245–253.

    PubMed  CAS  Google Scholar 

  18. Broughton A, Korner PI (1981) Estimation of maximum left ventricular inotropic response from changes in isovolumic indices of contractility in the dog. Cardiovasc Res 15:382–389.

    PubMed  CAS  Google Scholar 

  19. Burkhoff D, Sugiura S, Yue DT, Sagawa K (1987) Contractility dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol 252:H1218–H1227.

    PubMed  CAS  Google Scholar 

  20. Elzinga G, Westerhof N (1979) How to quantify pump function of the heart. The value of variables derived from measurements on isolated muscle. Circ Res 44:303–308.

    PubMed  CAS  Google Scholar 

  21. Forrester JS, Amsterdam EA, Parmley WW, Sonnenblick EH, Urschel CW (1972) Dissociation of myocardial contractility and pump performance in hemorrhagic shock. Correlation of in vivo measurements with assay of shock plasma in papillary muscle. Cardiology 57:333–347.

    PubMed  CAS  Google Scholar 

  22. Freeman GL, Little WC, O’Rourke RA (1986) The effect of vasoactive agents on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circulation 74:1107–1113.

    PubMed  CAS  Google Scholar 

  23. Freeman GL, Little WC, O’Rourke RA (1987) Influence of heart rate on left ventricular performance in conscious dogs. Circ Res 61:455–464.

    PubMed  CAS  Google Scholar 

  24. Gilson N, Crozatier B, Laplace M (1989) Left ventricular pressure-diameter relations in the conscious rabbit. Cardiovasc Res 23:7–15.

    PubMed  CAS  Google Scholar 

  25. Goldfarb RD (1982) Cardiac mechanical performance in circulatory shock: a critical review of methods and results. Circ Shock 9:633–653.

    PubMed  CAS  Google Scholar 

  26. Goldfarb RD, Tambolini W, Wiener SM, Weber PB (1983) Canine left ventricular performance during LD50 endotoxemia. Am J Physiol 244:H370–H377.

    PubMed  CAS  Google Scholar 

  27. Goldfarb RD (1985a) Evaluation of ventricular performance in shock. Circ Shock 15:281–301.

    PubMed  CAS  Google Scholar 

  28. Goldfarb RD (1985b) Author’s response. Circ Shock 15:305–306.

    Google Scholar 

  29. Goldfarb RD, Nightingale LM, Kish P, Weber PB, Loegering DJ (1986) Left ventricular function during lethal and sublethal endotoxemia in swine. Am J Physiol 251:H364–H373.

    PubMed  CAS  Google Scholar 

  30. Goldfarb RD, Lee KJ, Dziuban SW (1989) Variation in end-systolic pressure-diameter relationship using dP/dtmin or P/Dmax as a definition of endsystole in chronic endotoxemic pigs. Circ Shock 28:109–119.

    PubMed  CAS  Google Scholar 

  31. Gomez A, Wang R, Unruh H, Light RB, Bose D, Chau T, Correa E, Mink S (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73:671–685.

    PubMed  CAS  Google Scholar 

  32. Greenfield LJ, McCurdy JR, Hinshaw LB, Elkins RC (1972) Preservation of myocardial function during cross-circulation in terminal endotoxin shock. Surgery 72:111–118.

    PubMed  CAS  Google Scholar 

  33. Guntheroth WG, Jacky JP, Kawabori I, Stevenson JG, Moreno AH (1982) Left ventricular performance in endotoxin shock in dogs. Am J Physiol 242:H172–H176.

    PubMed  CAS  Google Scholar 

  34. Gupta KB, Bavaria JE, Ratcliffe MB, Edmunds LH, Bogen DK (1989) Measurements of end-systolic pressure-volume relations by intra-aortic balloon occlusion. Circulation 80:1016–1028.

    PubMed  CAS  Google Scholar 

  35. Hintze TH, Vatner SF (1982) Cardiac dynamics during hemorrhage. Relative unimportance of adrenergic inotropic responses. Circ Res 50: 705–713.

    PubMed  CAS  Google Scholar 

  36. Igarashi Y, Suga H (1986) Assessment of slope of end-systolic pressure-volume line of in situ dog heart. Am J Physiol 250:H685–H692.

    PubMed  CAS  Google Scholar 

  37. Igarashi Y, Goto Y, Yamada O, Ishii T, Suga H (1987) Transient vs steady end-systolic pressure-volume relation in dog left ventricle. Am J Physiol 252:H998–H1004.

    PubMed  CAS  Google Scholar 

  38. Janicki JS, Weber KT (1980) The pericardium and ventricular interaction, distensibility, and function. Am J Physiol 238:H494–H503.

    PubMed  CAS  Google Scholar 

  39. Kaseda S, Tomoike H, Ogata I, Nakamura M (1985) End-systolic pressure-volume, pressure-length, and stress-strain relations in canine hearts. Am J Physiol 249:H648–H654.

    PubMed  CAS  Google Scholar 

  40. Kass DA, Yamazaki T, Burkhoff D, Maughan WL, Sagawa K (1986) Determination of left ventricular end-systolic pressure-volume relationships by the conductance (volume) catheter technique. Circulation 73:586–595.

    PubMed  CAS  Google Scholar 

  41. Kass DA, Beyar R, Lankford E, Heard M, Maughan WL, Sagawa K (1989) Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation 79:167–178.

    PubMed  CAS  Google Scholar 

  42. Katz AM, Philip J, Goodhart HL (1977) Regulation of myocardial contractility. In: Katz AM, Philip J, Goodhart HL (eds) Physiology of the heart. Raven, New York, pp 175–195.

    Google Scholar 

  43. Kissling G, Brändie M (1991) The effect of decreased left-ventricular afterload on cardiac performance in the normal and hypertrophied rat heart. Basic Res Cardiol 86 [Suppl 3]:167–173.

    PubMed  Google Scholar 

  44. Kober PM, Thomas JX, Raymond RM (1985) Increased myocardial contractility during endotoxin shock in dogs. Am J Physiol 249:H715–H722.

    PubMed  CAS  Google Scholar 

  45. Kober PM, Gibbons DA, Raymond RM (1987) Increased inotropic state during splanchnic artery occlusion shock in the dog. Circ Shock 21:97–110.

    PubMed  CAS  Google Scholar 

  46. Koch-Weser J, Blinks JR (1963) The influence of the interval between beats on myocardial contractility. Pharmacol Rev 15:601–652.

    PubMed  CAS  Google Scholar 

  47. Kono A, Maughan WL, Sunagawa K, Hamilton K, Sagawa K, Weisfeldt ML (1984) The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation 70:1057–1065.

    PubMed  CAS  Google Scholar 

  48. Krösl P (1980) Die Kontraktilität des linken Ventrikels. Dissertation, Technische Universität, Graz.

    Google Scholar 

  49. Krösl P (1985) Hämodynamisch bedingte funktioneile und strukturelle Herzveränderungen. In: Deutsch E, Kleinberger G, Lenz K, Ritz R, Schuster HP (eds) Die Hämodynamik kritisch kranker Patienten — Wiener intensivmedizinische Tage 1984. Schattauer, Stuttgart, pp 153–166 (Aktuelle Intensivmedizin, vol 2).

    Google Scholar 

  50. Krösl P (1985) Vmax ist ein unbrauchbarer Parameter der linksventrikulären Kontraktilität. Biomed Tech (Berlin) 30:278–283.

    Google Scholar 

  51. Krösl P, Schlag G, Newald J, Schima H, Thurnher M, Redl H (1988) Probleme der Standardisierung des hypovolämisch-traumatischen Schocks im Tierexperiment. Acta Chir Austriaca 20 [Suppl]:9.

    Google Scholar 

  52. Krösl P, Khakpour Z, Thurnher M, Hallström S, Schima HM (1989) Isolated rabbit heart preparation to evaluate the inotropic effect of endotoxin. Prog Clin Biol Res 308:231–235.

    PubMed  Google Scholar 

  53. Krösl P, Pretorius JP, Hopf R, Khakpour Z, Kropik K, Thurnher M, Vogl C, Schlag G (1991) Evaluation of myocardial performance in hypovolemictraumatic and septic shock. Circ Shock 34:14.

    Google Scholar 

  54. Lascano EC, Negroni JA, Barra JG, Crottogini AJ, Pichel RH (1989) Single-beat evaluation of left ventricular inotropic state in conscious dogs. Am J Physiol 256:H56–H65.

    PubMed  CAS  Google Scholar 

  55. Lee K, van der Zee H, Dziuman SW, Luhmann K, Goldfarb RD (1988) Left ventricular function during chronic endotoxemia in swine. Am J Physiol 254:H324–H330.

    PubMed  CAS  Google Scholar 

  56. Levy M, Martin PJ (1979) Neural control of the heart. In Berne RM, Sperelakis N, Geiger SR (eds) The cardiovascular system. American Physiological Society, Bethesda, pp 581–620 (Handbook of physiology).

    Google Scholar 

  57. Liedtke AJ, Nellis SH, Fultz CW, Dietz M (1983) Application of an endsystolic pressure-segment length relationship for measuring regional contractility. Basic Res Cardiol 78:384–395.

    PubMed  CAS  Google Scholar 

  58. Little WC, Freeman GL (1987) Description of LV pressure-volume relations by time-varying elastance and source resistance. Am J Physiol 253:H83–H90.

    PubMed  CAS  Google Scholar 

  59. Maughan WL, Sunagawa K (1984) Factors affecting the end-systolic pressure-volume relationship. Fed Proc 43:2408–2410.

    PubMed  CAS  Google Scholar 

  60. Maughan WL, Sunagawa K, Burkhoff D, Graves WL, Hunter WC, Sagawa K (1985) Effect of heart rate on the canine end-systolic pressure-volume relationship. Circulation 72:654–659.

    PubMed  CAS  Google Scholar 

  61. McDonough KH, Lang CH, Spitzer JJ (1984) Depressed function of isolated hearts from hyperdynamic septic rats. Circ Shock 12:241–251.

    PubMed  CAS  Google Scholar 

  62. McDonough KH, Brumfield BA, Lang CH (1986) In vitro myocardial performance after lethal and nonlethal doses of endotoxin. Am J Physiol 250:H240–H246.

    PubMed  CAS  Google Scholar 

  63. McDonough KH, Burke EC, Smith LW (1990) In vitro cardiac function in early sepsis. J Med 21: 27–49.

    PubMed  CAS  Google Scholar 

  64. Miller WP, Liedtke AJ, Nellis SH (1984) Regional end-systolic pressure-length relationships using a volume-loading technique in the intact pig heart. Circ Res 55:326–335.

    PubMed  CAS  Google Scholar 

  65. Mirsky I (1974) Basic terminology and formulae for left ventricular wall stress. In: Mirsky I, Ghista DN, Sandier H (eds) Cardiac mechanics: physiological, clinical, and mathematical considerations. Wiley, New York, pp 3–10.

    Google Scholar 

  66. Mirsky I, Laks MM (1980) A geometric model for the myocardium: biventricular wall stresses in normal and hypertrophied states. Bull Math Biol 42: 807–828.

    PubMed  CAS  Google Scholar 

  67. Mur G, Baan J (1984) Computation of the input impedances of a catheter for cardiac volumetry. IEEE Trans Biomed Eng 31:448–453.

    PubMed  CAS  Google Scholar 

  68. Natanson C, Danner RL, Fink MP, MacVittie TJ, Walker RI, Conklin JJ, Parrillo JE (1988) Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am J Physiol 254:H558–H569.

    PubMed  CAS  Google Scholar 

  69. Nightingale LM, Tambolini WP, Kish P, Weber P, Goldfarb RD (1984) Depression of left ventricular performance during canine splanchnic artery occlusion shock. Circ Shock 14:93–106.

    PubMed  CAS  Google Scholar 

  70. Papadakis EJ, Abel FL (1988) Left ventricular performance in canine endotoxin shock. Circ Shock 24:123–131.

    PubMed  CAS  Google Scholar 

  71. Parker JL, Adams HR (1985a) Development of myocardial dysfunction in endotoxin shock. Am J Physiol 248:H818–H826.

    PubMed  CAS  Google Scholar 

  72. Parker JL, Adams HR (1985b) Isolated cardiac preparations: models of intrinsic myocardial dysfunction in circulatory shock. Circ Shock 15: 227–245.

    PubMed  CAS  Google Scholar 

  73. Parker JL, Keller RS, Behm LL, Behm LL, Adams HR (1990) Left ventricular dysfunction in early E. coli endotoxemia: effects of naloxone. Am J Physiol 259:H504–H511.

    PubMed  CAS  Google Scholar 

  74. Pasque MK, van Trigt P, Pellom GL, Freedman BM, Wechsler AS (1988) Assessment of the intrinsic contractile status of the heart during sepsis by myocardial pressure-dimension analysis. Ann Surg 208:110–117.

    PubMed  CAS  Google Scholar 

  75. Pretorius JP, Krösl P, Vogl C, Thurnher M, Hopf R, Kropik K, Khakpour Z, Redl H, Schlag G (1991) The effect of acute bacteraemic shock on left ventricular pressure-dimension relations in awake sheep. Circ Shock 34:15.

    Google Scholar 

  76. Quinones MA, Gaasch WH, Alexander JK (1976) Influence of acute changes in preload, afterload, contractile state and heart rate on ejection and isovolumetric indices of myocardial contractility in man. Circulation 53:293–301.

    PubMed  CAS  Google Scholar 

  77. Raymond RM, Kober PM (1985) Discussion. Circ Shock 15:303–307.

    Google Scholar 

  78. Raymond RM (1990) When does the heart fail during shock. Circ Shock 30:27–41.

    PubMed  CAS  Google Scholar 

  79. Redl G, Newald J, Schlag G, Traber LD, Traber DL (1991) Cardiac function in an ovine model of endotoxemia. Circ Shock 35:31–36.

    PubMed  CAS  Google Scholar 

  80. Robinson TF, Factor SM, Sonnenblick EH (1988) Das Herz als Saugpumpe. Spektr Wissensch Feb: 104-110.

    Google Scholar 

  81. Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74:172–183.

    PubMed  CAS  Google Scholar 

  82. Ross J (1984) Applications and limitations of endsystolic measures of ventricular performance. Fed Proc 43:2418–2422.

    PubMed  Google Scholar 

  83. Sabbah HN, Stein PD (1981) Pressure-diameter relations during early diastole in dogs. Incompatibility with the concept of passive left ventricular filling. Circ Res 45:357–365.

    Google Scholar 

  84. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:677–687.

    PubMed  CAS  Google Scholar 

  85. Sagawa M, Maughan L, Suga H, Sunagawa K (eds) (1988) Cardiac contraction and the pressure — volume relationship. Oxford University Press, New York, pp 3–480.

    Google Scholar 

  86. Santamore WP, Heckman JL, Bove AA (1984) Right and left ventricular pressure-volume response to respiratory maneuvers. J Appl Physiol 57: 1520–1527.

    PubMed  CAS  Google Scholar 

  87. Schlag G, Redl H, Hallström S, Radmore K, Davies J (1991) Hyperdynamic sepsis in baboons: I. Aspects of hemodynamics. Circ Shock 34:311–318.

    PubMed  CAS  Google Scholar 

  88. Schmidt HD, Scheer RD (1981) Quantitative data on the afterload dependence of left ventricular dP/dtmax in isolated canine hearts. Basic Res Cardiol 76:89–105.

    PubMed  CAS  Google Scholar 

  89. Schipke JD, Alexander J, Harasawa Y, Schulz R, Burkhoff D (1988) Interrelation between end-systolic pressure-volume and pressure-wall thickness relations. Am J Physiol 255:H679–H684.

    PubMed  CAS  Google Scholar 

  90. Shroff SG, Janicki JS, Weber KT (1983) Left ventricular systolic dynamics in terms of its chamber mechanical properties. Am J Physiol 245:H110–H124.

    PubMed  CAS  Google Scholar 

  91. Sodums MT, Badke FR, Starling MR, Little WC, O’Rourke RA (1984) Evaluation of left ventricular contractile performance utilizing endsystolic pressure-volume relationships in conscious dogs. Circ Res 54:731–739.

    PubMed  CAS  Google Scholar 

  92. Spinelli JC, Valentinuzzi ME (1986) Conductivity and geometrical factors affecting volume measurements with an impedancimetric catheter. Med Biol Eng Comput 24:460–464.

    PubMed  CAS  Google Scholar 

  93. Slinker BK, Shroff SG, Kirkpatrick RD, Campbell KB (1991) Left ventricular function depends on previous beat ejection but not previous beat pressure load. Circ Res 69:1051–1057.

    PubMed  CAS  Google Scholar 

  94. Stahl TJ, Alden PB, Ring WS, Madoff RC, Cerra FB (1990) Sepsis induced diastolic dysfunction in chronic canine peritonitis. Am J Physiol 258:H625–H633.

    PubMed  CAS  Google Scholar 

  95. Su JB, Crozatier B (1989) Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations. Effects on derived indexes in closed-chest dogs. Circulation 79:431–440.

    PubMed  CAS  Google Scholar 

  96. Suga H, Sagawa K (1974) Instantaneous pressure-volume relationships and their ratia in the excised, supported canine left ventricle. Circ Res 35:117–126.

    PubMed  CAS  Google Scholar 

  97. Suga H, Nishiura N (1981) Dissociation of end ejection from end systole of ventricle. Jpn Heart J 22:117.

    PubMed  CAS  Google Scholar 

  98. Suga H, Goto Y, Igarashi Y, Yamada O, Nozawa T, Yasumura Y (1986) Ventricular suction under zero source pressure for filling. Am J Physiol 251:H47–H55.

    PubMed  CAS  Google Scholar 

  99. Suga H, Yasumura Y, Nozawa T, Futaki S, Tanaka N (1988) Pressure-volume relation around zero transmural pressure in excised cross-circulated dog left ventricle. Circ Res 63:361–372.

    PubMed  CAS  Google Scholar 

  100. Sugi K, Newald J, Traber LD, Maguire JP, Herndon DN, Schlag G, Traber DL (1991) Cardiac dysfunction after acute endotoxin administration in conscious sheep. Am J Physiol 260:H1474–H1481.

    PubMed  CAS  Google Scholar 

  101. Sunagawa K, Maughan WL, Friesinger G, Guzman P, Chang MS, Sagawa K (1982) Effects of coronary arterial pressure on left ventricular end-systolic pressure-volume relation of isolated canine heart. Circ Res 50:727–734.

    PubMed  CAS  Google Scholar 

  102. Toombs CF, Vinten-Johansen J, Yokoyama H, Johnston WE, Julian JS, Cordeil AR (1991) Nonlinearity of indexes of left ventricular performance: effects on estimation of slope and diameter axis intercepts. Am J Physiol 260:H1802–H1809.

    PubMed  CAS  Google Scholar 

  103. Urschel CW, Vokonas PS, Henderson AH, Liedtke AJ, Horwitz LD, Sonnenblick EH (1980) Critical evaluation of indices of myocardial contractility derived from the isovolumic phase of contraction. Cardiology 65:4–22.

    PubMed  CAS  Google Scholar 

  104. Van der Linden LP, van der Velde ET, Bruschke AVG, Baan J (1990) Comparison between force-velocity and end-systolic pressure-volume characterization of intrinsic LV function. Am J Physiol 259:H1419–H1426.

    PubMed  Google Scholar 

  105. Van der Velde E, Burkhoff D, Steendijk P, Karsdon J, Sagawa K, Baan J (1991) Nonlinearity and load sensitivity of end-systolic pressure-volume relation of canine left ventricle in vivo. Circulation 83: 315–327.

    PubMed  Google Scholar 

  106. Wilson JM, Gay WA, Ebert PA (1973) The effects of oligemic hypotension on myocardial function. Surgery 73:657–664.

    PubMed  CAS  Google Scholar 

  107. Woodard JC, Bertram CD, Gow BS (1989) Effect of radial position on volume measurements using the conductance catheter. Med Biol Eng Comput 27: 25–32.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krösl, P.E., Pretorius, J.P. (1993). Myocardial Dysfunction in Experimental Septic Shock. In: Schlag, G., Redl, H. (eds) Pathophysiology of Shock, Sepsis, and Organ Failure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76736-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76736-4_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76738-8

  • Online ISBN: 978-3-642-76736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics