Skip to main content

Mechanosensitive Ion Channels in Yeast. Mechanisms of Activation and Adaptation

  • Chapter
Comparative Aspects of Mechanoreceptor Systems

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 10))

Abstract

The ability to sense and respond to mechanical stresses in the environment is almost certainly a universal feature of all cells. Although there are specialized cells (e.g., hair cells in the cochlea) for sensing mechanical stimuli, many if not all cells appear capable of detecting changes in pressure on their cell membrane. The mechanosensors for most mechanical stimuli appear to reside in the cell surface membrane. Physiological experiments have demonstrated that the activity of certain ion channels (mechanosensitive channels; Howard et al. 1988; Sachs 1989; Morris 1990), solute transporters (Wood 1988), and enzymes (Watson 1990) is regulated by mechanical stress on the cell membrane. The molecular mechanism of how mechanical stress activates such membrane proteins remains a complete mystery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86:2918–2922

    Article  PubMed  CAS  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Can Biol Publ, Guelph, Ontario

    Google Scholar 

  • Bartnicki-Garcia S, Lipman E (1972) The bursting tendency of hyphal tips of fungi: presumptive evidence for a delicate balance between wall synthesis and wall lysis in apical growth. J Gen Microbiol 73:487–500

    CAS  Google Scholar 

  • Bear CE (1990) A nonselective cation channel in rat liver cells is activated by membrane stretch. Am J Physiol 258:C421–C428

    PubMed  CAS  Google Scholar 

  • Benolken RM, Jacobsen SL (1970) Response properties of a sensory hair excised from Venus’s flytrap. J Gen Physiol 56:64–82

    Article  PubMed  CAS  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteroil 171:1087–1092

    CAS  Google Scholar 

  • Botstein D, Fink GR (1988) Yeast: an experimental organism for modern biology. Science 240:1439–1443

    Article  PubMed  CAS  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364

    Article  PubMed  CAS  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv Microbiol Physiol 7:181–242

    Article  Google Scholar 

  • Bullen BL, Best TR, Gregg MM, Barsel SE, Poff KL (1990) A direct screening procedure for gravitropism mutants in Arabidopsis thaliana (L.) Heynh. Plant Physiol 93:525–531

    Article  PubMed  CAS  Google Scholar 

  • Burdon-Sanderson J (1882) On the electromotive properties of the leaf of Dionaea in the excited and unexcited states. Phil Trans R Soc Lond B 173:1–53

    Article  Google Scholar 

  • Cahalan MD, Lewis RS (1988) Role of potassium and chloride channels in volume regulation by T lymphocytes. In: Gunn RB, Parker JC (eds) Cell physiology of blood. Rockefeller, New York, pp 281–301

    Google Scholar 

  • Caldwell JH, Van Brunt J, Harold FM (1986) Calcium-dependent anion channel in the water mold, Blastocladiella emersonii. J Membr Biol 89:85–97

    Article  PubMed  CAS  Google Scholar 

  • Carman GM, Henry SA (1989) Phospholipid biosynthesis in yeast. Annu Rev Biochem 58:635–669

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin ME, Strange K (1989) Anisosmotic cell volume regulation: a comparative view. Am J Physiol 257:C159-C173

    PubMed  CAS  Google Scholar 

  • Chasis JA, Shohet SB (1987) Red cell biochemical anatomy and membrane properties. Annu Rev Physiol 49:237–248

    Article  PubMed  CAS  Google Scholar 

  • Cole KS (1962) The advance of electrical models for cells and axons. Biophys J 2:101–119

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Hawkes AG (1983) The principles of the stochastic interpretation of ion-channel mechanism. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, p135–175

    Google Scholar 

  • Commandon J, de Fonbrune P (1939) De la formation et du fonctionnement des pieges des champignons predateurs des nematodes. Recherches effectuees a l’aide de la micromanipulation et de la cinematographic. CR Acad Sci Paris 207:304–305

    Google Scholar 

  • Cooper KE, Tang JM, Rae JL, Eisenberg RS (1986) A cation channel in frog lens epithelia responsive to pressure and calcium. J Membr Biol 93:259–269

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ, Hedrich R (1990) Stretch-activated cation, anion, and calcium channels coexist in guard cells. Plant Physiol 93:17

    Google Scholar 

  • Cosgrove DJ, Ortega JKE, Shropshire Jr W (1987) Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores. Biophys J 51:413–423

    Article  PubMed  CAS  Google Scholar 

  • Coster HGL, Steudle E, Zimmermann U (1977) Turgor pressure sensing in plant cell membranes. Plant Physiol 58:636–643

    Article  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434

    PubMed  CAS  Google Scholar 

  • Dale JE, Sutcliffe JF (1986) Water relations of plant cells. In: Plant physiology, Vol. IX: Water and solutes in plants. Academic Press, New York, pp 1–48

    Google Scholar 

  • Dennison DS (1961) Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli. J Gen Physiol 45:23

    Article  PubMed  CAS  Google Scholar 

  • Drubin DG (1990) Actin actin-binding proteins in yeast. Cell Motil Cytoskel 15:7–11

    Article  CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog sacculus. J Neurosci 7:2821–2836

    PubMed  CAS  Google Scholar 

  • Edwards KL, Pickard BG (1987) Detection and transduction of physical stimuli in plants. In: Wagner E, Greppin H, Millet B (eds) The cell surface in signal transduction. Springer, Berlin Heidelberg New York Tokyo, pp 41–66

    Google Scholar 

  • Erxleben C (1989) Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Evans E, Waugh R, Melnick L (1976) Elastic area compressibility modulus of red cell membrane. Biophys J 16:585–595

    Article  PubMed  CAS  Google Scholar 

  • Falke LC, Misler S (1989) Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells. Proc Natl Acad Sci USA 86:3919–3923

    Article  PubMed  CAS  Google Scholar 

  • Falke LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237:141–144

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R, Andrews DM, Haydon DA (1971) The thickness, composition, and structure of some lipid bilayers and natural membranes. J Membr Biol 5:277–96

    Article  CAS  Google Scholar 

  • Goldberg RG (1988) Plants: novel developmental processes. Science 240:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Lagunas F, Pena A, Lievano A, Darszon A (1989) Incorporation of ionic channels from yeast plasma membranes into black lipid membranes. Biophys J 56:115–119

    Article  PubMed  CAS  Google Scholar 

  • Green PB, Bauer K, Cummins WR (1977) Biophysical model for plant cell growth: auxin effects. In: Jungreis AM et al. (eds) Water relations in membrane transport in plants and animals. Academic Press, New York, pp 30–45

    Google Scholar 

  • Green PB, Erickson RO, Buggy J (1971) Metabolic and physical control of cell elongation rate: in vivo studies in Nitella. Plant Physiol 47:423–430

    Article  PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    PubMed  CAS  Google Scholar 

  • Gustin MC, Martinac B, Saimi Y, Culbertson MR, Kung C (1986) Ion channels in yeast. Science 233:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765

    Article  PubMed  CAS  Google Scholar 

  • Gutknecht J, Hastings DF, Bisson MA (1978) Ion transport and turgor pressure regulation in giant algal cells. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol III. Springer, Berlin Heidelberg New York Tokyo, pp 125–174

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth F (1981) Improved patch-clamp techniques for high resolution current recordings from cells and cell-free patches. Pfliigers Arch Eur J Physiol 391:85–100

    Article  CAS  Google Scholar 

  • Hellebrust JA (1976) Osmoregulation. Annu Rev Plant Physiol 27:485–505

    Article  Google Scholar 

  • Higgins CF, Cairney J, Stirling DA, Sutherland L, Booth IR (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem Sci 12:339–344

    Article  CAS  Google Scholar 

  • Hille B (1984) Ionic channels of excitable membranes. Sinauer Assoc Sunderland, Massachusetts

    Google Scholar 

  • Hoch HC, Staples RC, Whitehead B, Comeau J, Wolf ED (1987) Signalling for growth orientation and cell differentiation by surface topography inUromyces. Science 235:1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Hochmuth RM, Waugh RE (1987) Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol 49:209–219

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Biophys Chem 17:99–125

    Article  PubMed  CAS  Google Scholar 

  • Hudson RL, Schultz SG (1988) Sodium-coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activities. Proc Natl Acad Sci USA 85:279–283

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi A, Yano M, Shimizu H (1989) Development of extracellular electric pattern around Lepidium roots: its possible role in root growth and gravitropism. Protoplasma 148:94–100

    Article  Google Scholar 

  • Jackson MB, Barlow PW (1981) Root geotropism and the role of growth regulators from the cap: a reexamination. Plant Cell Environ 4:107–123

    Article  CAS  Google Scholar 

  • Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta 114:143–157

    Article  Google Scholar 

  • Lew RR (1990) Ion channels of Arabidopsis. Plant Physiol 93:49

    Google Scholar 

  • Lindau M, Neher E (1988) Patch-clamp techniques for time resolved capacitance measurements in single cells. PflUgers Arch Eur J Physiol 411:137–146

    Article  CAS  Google Scholar 

  • Maiorella BL, Blanch HW, Wilke CR (1984) Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol Bioeng 26:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in E. coll Proc Natl Acad Sci USA 84:2297–2301

    Article  PubMed  CAS  Google Scholar 

  • McCann JD, Li M, Welsh MJ (1989) Identification and regulation of whole-cell chloride currents in airway epithelium. J Gen Physiol 94:1015–1036

    Article  PubMed  CAS  Google Scholar 

  • Meikle AJ, Reed RH, Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts ofSaccharomyces cerevisiae. J Gen Microbiol 134:3049–3060

    PubMed  CAS  Google Scholar 

  • Methfessel C, Witzmann V, Takahashi T, Mishina M, Numa S, Sakmann B (1986) Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pfliigers Arch Eur J Physiol 407:577–588

    Article  CAS  Google Scholar 

  • Millet B, Pickard BG (1988) Gadolinium ion is an inhibitor suitable for testing the putative role of stretch-activated ion channels in geotropism and thigmotropism. Biophys J 53:155a

    Google Scholar 

  • Moody WJ, Bosma MM (1989) A nonselective cation channel activated by membrane deformation in oocytes of the ascidian Boltenia villosa. J Membr Biol 107:179–188

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Evans ML (1986) How roots perceive and respond to gravity. Am J Bot 73:574–587

    Article  PubMed  CAS  Google Scholar 

  • Moran N (1990) Stretch-activated channels in plasmalemma of pulvinar motor cells. Plant Physiol 93:17

    Google Scholar 

  • Morris CE (1990) Mechanosensitive Ion Channels. J Membr Biol 113:93–107

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa S, Kataoka H, Tazawa M (1974) Osmotic and ionic regulation in Nitella. Plant Cell Physiol 15:457–468

    CAS  Google Scholar 

  • Ortega JKE, Zehr EG, Keanini RG (1989) In vivo creep and stress relaxation experiments to determine the wall extensibility and yield threshold for the sporangiophores of Phycomyces Biophys J 56:465–475

    Article  PubMed  CAS  Google Scholar 

  • Philip JR (1958) The osmotic cell, solute diffusability, and the plant water economy. Plant Physiol 33:264–271

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Cudek JA, Foster R, Gadd GM (1987) Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl Environ Microbiol 52:2119–2123

    Google Scholar 

  • Sachs F (1987) Baroreceptor mechanisms at the cellular level. Fed Proc, Fed Am Soc Exp Biol 46:12–16

    CAS  Google Scholar 

  • Sachs F (1989) Ion channels as mechanical transducers. In: Stein WD, Bronner F (eds) Cell shape: determinants, regulation and regulatory role. Academic Press, New York, pp 63–92

    Google Scholar 

  • Sackin H (1989) A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci USA 86:1731–1735

    Article  PubMed  CAS  Google Scholar 

  • Saimi Y et al. (1990) Recording of ion channels of microorganisms. Methods Enzymol (in press)

    Google Scholar 

  • Schroeder JI (1988) K+ transport properties of K+ channels in the plasma membrane of Viciafaba guard cells. J Gen Physiol 92:667–683

    Article  PubMed  CAS  Google Scholar 

  • Sheetz MP, Turney S, Qian H, Elson EL (1989) Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature (Lond) 340:284–288

    Article  CAS  Google Scholar 

  • Sievers A, Schnepf E (1981) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Berlin Heidelberg New York, pp 263–299

    Google Scholar 

  • Sigurdson WJ, Morris CE, Brezden BL, Gardner DR (1987) Stretch activation of a K+ channel in molluscan heart cells. J Exp Biol 127:191–209

    Google Scholar 

  • Stockbridge LL, French AS (1988) Stretch-activated cation channels in human fibroblasts. Biophys J 54:187–190

    Article  PubMed  CAS  Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657

    Article  CAS  Google Scholar 

  • Ubl J, Murer H, Kolb H-A (1988) Ion channels activated by osmotic and mechanical stress in membranes of opossum kidney cells. J Membr Biol 104:223–232

    Article  PubMed  CAS  Google Scholar 

  • Watson PA (1990) Direct stimulation of adenylate cyclase by mechanical forces in S49 mouse lymphoma cells during hypoosmotic swelling. J Membr Biol 265:6569–6575

    CAS  Google Scholar 

  • White SK (1974) Comments on electrical breakdown of bimolecular lipid membranes as an electro-mechanical instability. Biophys J 14:155–158

    Article  PubMed  CAS  Google Scholar 

  • Wolfe J, Steponkus PL (1981) The stress-strain relation of the plasma membrane of isolated plant protoplasts. Biochim Biophys Acta 643:663–668

    Article  PubMed  CAS  Google Scholar 

  • Wood JM (1988) Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria. J Membr Biol 106:183–202

    Article  PubMed  CAS  Google Scholar 

  • Worrell RT, Butt AG, Cliff WH, Frizzell RA (1989) A volume-sensitive chloride conductance in human colonic cell line T84. Am J Physiol 256:C1111-C1119

    PubMed  CAS  Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1971

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U (1978) Physics of turgor- and osmoregulation. Ann Rev Plant Physiol 29:121–148

    Article  CAS  Google Scholar 

  • Zimmermann U, Steudle E (1974) Hydraulic conductivity and volumetric elastic modulus in giant algal cells: pressure and volume dependence. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York Tokyo, pp 64–71

    Chapter  Google Scholar 

  • Zimmermann U, Hade H, Steudle E (1969) Kontinuierliche Druckmessung in Pflanzenzellen. Naturwissenschaften 56:634

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gustin, M.C. (1992). Mechanosensitive Ion Channels in Yeast. Mechanisms of Activation and Adaptation. In: Ito, F. (eds) Comparative Aspects of Mechanoreceptor Systems. Advances in Comparative and Environmental Physiology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76690-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76690-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76692-3

  • Online ISBN: 978-3-642-76690-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics