Skip to main content

Tuning of Visuomotor Coordination During Prey Capture in Water Birds

  • Chapter
Perception and Motor Control in Birds

Abstract

In order to perform the necessary motor activities for prey capture, a predator must obtain spatio-temporal information on the orientation and distance of the prey, and on the relative motion between it and the prey (cf. Chap. 13). Predatory acts are useful in the study of visuomotor coordination mechanisms and the means by which they are tuned to achieve optimal direction and timing of movements. “Sit and wait” predatory patterns are especially useful, as they involve relatively distinct motor patterns, are of short duration and are relatively easy to record. A “sit and wait” predator stalks prey slowly, or even keeps motionless until the prey is close enough, and then performs a fast capturing movement (O’Brian et al. 1990). This is often a “point of no return”, after which prey either is captured or escapes. For example, after slowly approaching and aiming at an insect, a chameleon (Chameleo spp.) rapidly “shoots” its long tongue at it. To avoid over- or undershooting of the tongue, distance must be accurately estimated prior to “shooting”, as no motor corrections are performed later (Harkness 1977; Flanders 1985). Predators such as toads, preying mantids and herons, which capture prey using a rapid movement, must perform in a similar manner (Mittelstaedt 1957; Curio 1976; Ewert 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alerstam T (1990) Bird migration. Cambridge University Press, Cambridge

    Google Scholar 

  • Ashmole NP (1971) Sea bird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology, vol I. Academic Press, New York, pp 224–286

    Google Scholar 

  • Bekoff M, Dorr R (1976) Predation by “shooting” in archerfish, Ioxotes jaculatrix: accuracy and sequences. Bull Psychon Soc 7: 167–168

    Google Scholar 

  • Bischof H-J (1988) The visual fields and visually guided behaviour in the zebra finch (Taeniopygia guttata). J Comp Physiol 163: 329–337

    Article  Google Scholar 

  • Curio E (1976) the ethology of predation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Davies MNO, Green PR (1990) Flow field variables trigger landing in hawk but not in pigeons. Naturwissenschaften 77: 142–144

    Article  PubMed  CAS  Google Scholar 

  • Davies MNO, Green PR (1991) The adaptability of visuomotor control in the pigeon during landing flight. Zool Jahrb Physiol 95: 331–338

    Google Scholar 

  • Dill LM (1977) Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behav Ecol Sociobiol 2: 169–184

    Google Scholar 

  • Douthwaite RJ (1976) Fishing techniques and foods of the pied kingfisher on Lake Victoria. Ostrich 47: 153–160

    Article  Google Scholar 

  • Dunn E (1973) Changes in fishing abilities of terns associated with wind speed and sea surface conditions. Nature 244: 520–521

    Article  Google Scholar 

  • Ewert JP (1980) Neuroethology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Flanders M (1985) Visually guided head movement in the African chameleon. Vision Res 25: 935–942

    Article  PubMed  CAS  Google Scholar 

  • Goodale MA (1983) Visually guided pecking in the pigeon (Columba livia). Brain Behav Evol 22: 22–41

    Article  PubMed  CAS  Google Scholar 

  • Grubb TC (1976) Why ospreys hover. Wilson Bull 89: 149–150

    Google Scholar 

  • Grubb TC (1977) Weather dependent foraging in ospreys. Auk 94: 146–149

    Google Scholar 

  • Hafner H, Boy V, Gory G (1982) Feeding methods, flock size and feeding success in little egrets, Egretta garzetta and squacco heron Ardeola ralloides in Camargue, southern France. Ardea 70: 45–54

    Google Scholar 

  • Hancock J, Kushlan J (1984) The herons handbook. Croom Helm, London

    Google Scholar 

  • Harkness L (1977) Chameleons use accomodation to judge distance. Nature 267: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Varju D (1990) Geometric optical investigation of the underwater visual field of aerial animals. Math Biosci 102: 1–19

    Article  PubMed  CAS  Google Scholar 

  • Howland HC (1974) Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. J Theor Biol 47: 333–350

    Article  PubMed  CAS  Google Scholar 

  • Howland HC, Sivak JG (1984) Penguin vision in air and water. Vision Res 24: 1905–1909

    Article  PubMed  CAS  Google Scholar 

  • Jackson S (1984) Predation by pied kingfishers and whitebreasted cormorants on fishes in the Kosi estuary system. Ostrich 55: 113–132

    Article  Google Scholar 

  • Jenkins FA, White HE (1976) Fundamentals of optics, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Katzir G, Camhi J (1993) Escape response of black mollies (Poecilia sphenops) from predatory dives of a pied kingfisher (Ceryle rudis). Copeia (in press)

    Google Scholar 

  • Katzir G, Intrator N (1987) Striking of underwater prey by reef herons, Egretta gularis schistacea. J Comp Physiol 160: 517–523

    Article  Google Scholar 

  • Katzir G, Shechtman E, Dive patterns of pied kingfishers (Ceryle rudis): coping with light refraction in determining prey depth, (in prep.)

    Google Scholar 

  • Katzir G, Lotem A, Intrator N (1989) Stationary underwater prey missed by reef herons, Egretta gularis: heat position and light refraction at the moment of strike. J Comp Physiol 165: 573–576

    Article  Google Scholar 

  • Katzir G, Arad Z, Strod T, Coping with light refraction in four heron species, (in prep)

    Google Scholar 

  • Krebs JR, Partridge B (1973) The significance of heat tilting in the great blue heron. Nature 245: 533–535

    Article  Google Scholar 

  • Labinger Z, Katzir G, Benjamini Y (1991) Prey size choice by captive pied kingfishers, Ceryle rudis L. Anim Behav 42: 969–975

    Article  Google Scholar 

  • Labinger Z, Benjamini Y, Katzir G, Prey choice in the pied kingfisher, Ceryle rudis L: the relationship between prey size and depth, (in prep)

    Google Scholar 

  • Lee DN (1980) The optic flow field: the foundation of vision. Philos Trans R Soc Lond B 290: 169–179

    Article  CAS  Google Scholar 

  • Lee DN, Reddish PE (1981) Plummeting gannets: a paradigm of ecological optics. Nature 293: 293–294

    Article  Google Scholar 

  • Lee DN, Young DS (1986) Gearing action to the environment. Experimental brain research, Series 15. Springer, Berlin Heidelberg New York, pp 217–230

    Google Scholar 

  • Levy B, Sivak JG (1980) Mechanisms of accomodation in the bird eye. J Comp Physiol 137: 267–272

    Article  Google Scholar 

  • Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas RH, Djamgoz (eds) The visual system of fish. Chapman and Hall, London, pp 1–40

    Chapter  Google Scholar 

  • Lotem A, Katzir G, Schechtman E (1991) Capture of submerged prey by little egrets, Egretta garzetta garzetta: strike depth, strike angle and the problem of light refraction. Anim Behav 42: 341–346

    Article  Google Scholar 

  • Luling KH (1963) The archerfish. Sci Am 209: 100–110

    Article  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • Martin GR (1985) Eye. In: King AS, McLelland J, (eds) Form and function in birds, vol 3. Academic Press, London, pp 311–373

    Google Scholar 

  • Martin GR (1986) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude visual fields and schematic optics. J Comp Physiol 159: 545–557

    Article  Google Scholar 

  • Martin GR, Katzir G, Visual fields in herons (Ardoidae) - panoramic vision beneath the bill. Brain Behav Evol (in press)

    Google Scholar 

  • Martin GR, Young SR (1984) The eye of the Humboldt penguin, Spheniscus humboldti: visual fields and schematic optics. Proc R Soc Land B 223: 197–222

    Article  CAS  Google Scholar 

  • Martinoya C, Rey J, Bloch S (1981) Limits of the pigeon’s binocular fields and direction of best binocular viewing. Vision Res 21: 1197–1200

    Article  PubMed  CAS  Google Scholar 

  • McFarland WN, Loew ER (1983) Wave produced changes in underwater light and their relation to vision. Environ Biol Fishes 8: 173–184

    Article  Google Scholar 

  • Migongo EWK (1978) Environmental factors affecting the distribution of malachite and pied kingfishers in Lake Nakuru national park. Thesis, University of Nairobi, Kenya

    Google Scholar 

  • Mittelstaedt H (1957) Prey capture in mantids. In: Scheer BT (ed) Recent advances in invertebrate physiology. University of Oregon Publications, Oregon, pp 51–71

    Google Scholar 

  • Moroney MK, Pettigrew JD (1987) Some observations on the visual optics of kingfishers (Aves, Coraciformes, Alcedinidae). J Comp Physiol 160: 137–149

    Article  Google Scholar 

  • Müntz WRA (1972) Inert absorbing and reflecting pigments. In: Dartnall HJA, (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 529–565

    Google Scholar 

  • O’Brian WJ, Brownman HI, Evans BI (1990) Search strategies of foraging animals. Am Sci 78: 152–160

    Google Scholar 

  • Reyer H-U, Mogongo-Bake W, Schmidt L (1988) Field studies and experiments on the distribution and foraging of pied and malachite kingfishers at lake Nakuru ( Kenya ). J Anim Ecol 57: 595–610

    Article  Google Scholar 

  • Schenck H (1957) On the focusing of sunlight by ocean waves. J Opt Soc Am 47: 653–657

    Article  Google Scholar 

  • Sivak JG, Hildebrand T, Lebert C (1985) Magnitude and rate of accomodation in diving and nondiving birds. Vison Res 25: 925–933

    Article  CAS  Google Scholar 

  • Swinton WE (1975) Fossil birds. British Museum of Natural History, London

    Google Scholar 

  • Walls GL (1967) The vertebrate eye and its adaptive radiation, (facsimile of 1942 edition). Hafner, New York

    Google Scholar 

  • Weihs D, Webb PW (1984) Optimal avoidance tactics in predator prey interactions. J Theor Biol 106: 189–206

    Article  Google Scholar 

  • Welty CJ, Baptista L (1988) The life of birds, 4th edn. Saunders College Publishing, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katzir, G. (1994). Tuning of Visuomotor Coordination During Prey Capture in Water Birds. In: Davies, M.N.O., Green, P.R. (eds) Perception and Motor Control in Birds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75869-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75869-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75871-3

  • Online ISBN: 978-3-642-75869-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics