Skip to main content

Hydrothermal Processes in Oceanic Crust and Related Mineral Deposits

  • Chapter
Hydrothermal Mineral Deposits
  • 1322 Accesses

Abstract

Following a brief review of the main physiographic features of the ocean floor and the nature and structure of the oceanic lithosphere, this chapter looks in some detail at the hydrothermal processes which take place as a result of sea water percolation into large sectors of the oceanic crust in the mid-oceanic regions. It further examines the mineral deposits that result from this activity, both in the present-day sea floor and in the geological record (ophiolite belts). Excluded from this discussion are the hydrogenous sea-floor deposits of Mn-rich nodules, which are believed to form by direct precipitation of metals from sea water, although the metal components are possibly derived from the hot springs that issue at mid-ocean ridges, and are subsequently dispersed in sea water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson R G, Teichmann R F H (1986) The Matchless cupreous pyrite deposit, South West Africa/ Namibia. In: Anhaeusser C R, Maske S (eds) Mineral Deposits of Southern Africa, Vol 2. Geol Soc S Afr, pp 1755–1760

    Google Scholar 

  • Alabaster T, Pearce J A (1985) The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite. Econ Geol 80: 1–16

    Google Scholar 

  • Alt J C, Lonsdale P, Haymon R, Muehlenbachs K (1987) Hydrothermal sulfide and oxide deposits on seamounts near 21 N, East Pacific Rise. Geol Soc Am Bull 98: 157–168

    Google Scholar 

  • Andrews A J, Fyfe W S (1976) Metamorphism and massive sulphide generation in oceanic crust. Geosci Can 3: 84–94

    Google Scholar 

  • Banks D A (1985) A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposits in Ireland. Nature (London) 313: 128–131

    Google Scholar 

  • Barrett T J, Jambor J L (eds) (1988) Seafloor hydrothermal mineralization. Can Mineral Spec Issue 26, 888 pp

    Google Scholar 

  • Beccaluva L (ed) (1989) Ophiolites and lithosphere of marginal seas. Chem Geol 77: 165–398

    Google Scholar 

  • Best M G (1982) Igneous and metamorphic petrology. Freeman, San Francisco, 630 pp

    Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centers. Earth Planet Sei Rev 3: 401–431

    Google Scholar 

  • Bonatti E (1983) Hydrothermal metal deposits from the ocean rifts: a classification. In: Rona P A, Bostrom K, Laubier L, Smith KL (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 491–502

    Google Scholar 

  • Bott M H P (1982) The interior of the Earth: its structure, constitution and evolution. Arnold, London, 403 pp

    Google Scholar 

  • Boudier F, Nicolas A (eds) (1988) The ophiolites of Oman. Tectonophysics Spec Issue 151

    Google Scholar 

  • Boyce A J, Coleman M L, Russell M J (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature (London) 306: 545–550

    Google Scholar 

  • Breitkopf J H, Maiden K J (1988) Tectonic setting of the Matchless Belt pyritic copper deposits, Namibia. Econ Geol 83: 710–723

    Google Scholar 

  • Burke K C, Kidd W S F, Turcotte L, Dewey J F, Mouginis-Mark P J, Parmentier, E M, Sengör A M C, Tapponier P E (1981) Tectonics of basaltic volcanism. In: Basaltic volcanisn on the terrestrial planets. Lunar Planet Inst (ed), Houston. Pergamon, New York, pp 803–898

    Google Scholar 

  • Canadian American Seamount Expedition (1985) Hydrothermal vents on an axis seamount of the Juan de Fuca ridge. Nature (London) 313: 212–214

    Google Scholar 

  • Coleman R G (1977) Ophiolites. Springer, Berlin, Heidelberg, New York, 229 pp

    Google Scholar 

  • Coleman R G (1984) Ophiolites and the tectonic evolution of the Arabian peninsula. Geol Soc Special Publ 13: 359–366

    Google Scholar 

  • Constantinou G (1980) Metallogenesis associated with the Troodos ophiolite. In: Panayioutou A (ed) Ophiolites. Int Symp Cyprus 1979, Proc Cyprus Minist Agric Nat Resourc, pp 663–674

    Google Scholar 

  • Constantinou G, Govett G J S (1972) Genesis of sulphide deposits, ochre and umber of Cyprus. Trans Inst Min Metall 81: B34–B36

    Google Scholar 

  • Davies H L (1971) Peridotite-gabbro-basalt complex in eastern Papua: an overthrust plate of oceanic mantle and crust. Bur Mineral Resourc Aust Bull 128 48 pp

    Google Scholar 

  • Davies H L, Jaques A L (1984) Emplacement of ophiolite in Papua New Guinea. Geol Soc Spec Publ 13: 341–349

    Google Scholar 

  • Delaney J R, Cosens B A (1982) Boiling and metal deposition in sub-marine hydrothermal systems. Mar Techn Soc J 16: 62–65

    Google Scholar 

  • Duncan R A (1981) Hotspots in the southern oceans an absolute frame of reference for motion of the Gondwana continents. Tectonophysics 74: 29–42

    Google Scholar 

  • Edmond J M, von Damm K (1983) Hot springs on the ocean floor. Sei Am 248: 70–85

    Google Scholar 

  • Edmond J M, Measures C, McDuff R E, Chan L H, Collier R, Grant B, Gordon L I, Corliss J B (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet Sei Lett, 46: 1–18

    Google Scholar 

  • Embley R W, Jonasson IR, Perfit M R, Franklin J M, Tivey M A, Malahoff A, Smith M F, Francis T J G (1988) Submersible investigation of an extinct hydrothermal system on the Galapagos ridge: sulfide mounds, stockwork zone, and differentiated lavas. Can Mineral 26: 517–539

    Google Scholar 

  • Fleet A J, Robertson A H F (1980) Ocean-ridge metalliferous and pelagic sediments of the Semail Nappe, Oman. J Geol Soc London 137: 403–422

    Google Scholar 

  • Fouquet Y, Auclair G, Cambon P, Etoubleau J (1988) Geological setting and mineralogical and geochemical investigations on sulfide deposits near 13 N on the East Pacific Rise Marine. Geology 84: 145–178

    Google Scholar 

  • Fouquet Y, von Stackelberg V, Charlou J L, Donval J P, Erzinger J, Foucher J P, Herzig P, Mühe R, Sokai S, Wiedicke M, Whitechurch H (1991a) Hydrothermal activity and metallogenesis in the Lau arc basin. Nature (London) 349: 778–781

    Google Scholar 

  • Fouquet Y, von Stackelberg U, Charlou J L, Donval J P, Foucher J P, Erzinger J, Herzig P, Miihe R, Wiedicke M, Soakai S, Whitechurch H (1991b) Hydrothermal activity in the Lau back-arc basin: sulfides and water chemistry. Geology 19: 303–306

    Google Scholar 

  • Fox J S (1984) Besshi-type volcanogenic sulphide deposits a review. CIM Bull 77: 57–68

    Google Scholar 

  • Francheteau J, Needham H D, Choukroune P, Juteau T, Seguret M, Ballard R D, Fox P J, Normark W, Carranza A, Cordoba D, Guerrero J, Rangin C, Bougault H, Cambon P, Hekinian R (1979) Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature (London) 277: 523–528

    Google Scholar 

  • Franklin J M, Goodfellow W D, Lydon J W, Jonasson I R, Davis E E (1990) Middle valley; a major center of hydrothermal activity in a sedimented ridge crest, Northern Juan de Fuca Ridge. Abstracts with Programs. Geol Soc Am Annu Meet, Dallas, p A9

    Google Scholar 

  • Franklin J M, Sangster D M, Lydon J W (1981) Volcanic-associated massive sulfide deposits. Econ Geol 75th Anniv Vol: 485–627

    Google Scholar 

  • Gass I G (1982) Ophiolites. Sci Am 247: 108–117

    Google Scholar 

  • Gass I G, Lippard S J, Shelton A W (eds) (1984) Ophiolites and oceanic lithosphere. Geol Soc Special Publ 13. Blackwell, Oxford, 413 pp

    Google Scholar 

  • Goldberg I (1976) A preliminary account of the Otjihase copper deposit, South West Africa. Econ Geol 71: 384–390

    Google Scholar 

  • Govett G J S, Pantanzis T M (1971) Distribution of Cu, Zn, Ni and Co in the Troodos pillow lava series, Cyprus. Trans Inst Min Metall 80: B1327–B1346

    Google Scholar 

  • Graham U M, Bluth G J, Ohmoto H (1988) Sulfide-sulfate chimneys on the East Pacific Rise, 11 and 13 N latitudes. Part I: mineralogy and paragenesis. Can Mineral 26: 487–504

    Google Scholar 

  • Grassle J F (1983) Introduction to the geology of hydrothermal vents. In: Rona P A, Bostrom K, Laubier L, Smith K L (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 665–676

    Google Scholar 

  • Hadjistavrinou Y, Constantinou G (1982) Cyprus. In: Dunning, F W, Mykura W, Slater D (eds) Mineral deposits of Europe, Vol 2. Inst Min Metall, London, pp 255–277

    Google Scholar 

  • Hannington M D, Hall GEM, Vaive J (1990) Acid pore fluids from an oxidising sulfide deposit on the Mid-Atlantic ridge: implications for supergene enrichment of gold on the sea-floor. Abstracts with programs. Geol Soc Am Ann Meet, Dallas, p A42

    Google Scholar 

  • Haymon R M, Kastner M (1981) Hot spring deposit on the East Pacific Rise at 21 N: preliminary description of mineralogy and genesis. Earth Planet Scie Lett 53: 363–381

    Google Scholar 

  • Haymon R, Koski R A, Sinclair C (1984) Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail Ophiolite, Oman. Science 223: 1407–1409

    Google Scholar 

  • Hekinian R, Fouquet Y (1985) Volcanism and metallogenesis of axial and off-axial structures on the East Pacific Rise near 13 N. Econ Geol 80: 221–249

    Google Scholar 

  • Hekinian R, Fevrier M, Bischoff J L, Picot P, Shanks W C (1980) Sulfide deposits from the East Pacific Rise near 21 N. Science 207: 1433–1444

    Google Scholar 

  • Hekinian R, Fevrier M, Avedik F, Cambon P, Charlou J L, Needham H D, Raillard J, Boulegue J, Merlivat L, Moinet A, Manganini S, Lange J (1983) East Pacific Rise near 13 N: geology of the hydrothermal fields. Science 219: 1321–1324

    Google Scholar 

  • Hughes C J (1982) Igneous petrology. Elsevier, Amsterdam, 551 pp

    Google Scholar 

  • Huston D L, Large R R (1989) A chemical model for the concentration of gold in volcanogenic massive sulphide deposits. Ore Geol Rev 4: 171–200

    Google Scholar 

  • Ixer R A, Alabaster T, Pearce J A (1984) Ore petrography and geochemistry of massive sulphide deposits within the Semail ophiolite, Oman. Trans Inst Min Metall 93: B114–B124

    Google Scholar 

  • Karpoff A M, Walter A V, Pflumio C (1988) Metalliferous sediments within lava sequences of the Samail ophiolite (Oman): mineralogical and geochemical characterization, origin and evolution. Tectonophysics 151: 223–246

    Google Scholar 

  • Kawahata H, Furuta T (1985) Sub-sea-floor hydrothermal alteration in the Galapagos spreading center. Chem Geol 49: 259–274

    Google Scholar 

  • Kawahata H, Shikazono N (1988) Sulfur isotope and total sulfur studies of basalts and greenstones from DSDP hole 504B, Costa Rica rift: implications for hydrothermal alteration. Can Mineral 26: 555–565

    Google Scholar 

  • Keays R R (1987) Principles of mobilization (dissolution) of metals in mafic and ultramafic rocks. The role of immiscible magmatic sulphides in the generation of hydrothermal gold and volcanogenic massive sulphide deposits. Ore Geol Rev 2: 47–63

    Google Scholar 

  • Kennett J (1982) Marine Geology. Prentice-Hall, Englewood Cliffs, 813 pp

    Google Scholar 

  • Killick A M (1983) Sulphide mineralization at Gorob and its genetic relationship to the Matchless Member, Damara Sequence, SWA/ Namibia. Geol Soc S Afr Spec Publ 11: 381–384

    Google Scholar 

  • Klemd R, Maiden K J, Okrusch M (1987) The Matchless copper deposit, South West Africa/Namibia: A deformed and metamorphosed massive sulfide deposit. Econ Geol 82: 587–599

    Google Scholar 

  • Klemd R, Maiden K J, Okrusch M, Richter P (1989) Geochemistry of the Matchless metamorphosed massive sulfide deposit, South West Africa/Namibia: wall-rock alteration during submarine oreforming processes. Econ Geol 84: 603–617

    Google Scholar 

  • Light M P R (1982) The Limpopo Mobile Belt: a result of continental collision. Tectonics 1: 325–342

    Google Scholar 

  • Lonsdale P, Becker K (1985) Hydrothermal plumes, hot springs, and conductive heat flow in the Southern Trough of Guyamas Basin. Earth Planet Scie Lett 73: 211–225

    Google Scholar 

  • Lonsdale P, Bischoff J L, Burns V M, Kastner M, Sweeney R E (1980) A high-temperature hydrothermal deposit on the seabed at a gulf of California spreading center. Earth Planet Sci Lett 49: 8–20

    Google Scholar 

  • MacDonald K C, Fox P J (1990) The Mid-Ocean Ridge. Sci Am 262: 42–49

    Google Scholar 

  • MacDonald K C, Becher F, Spiess F N, Ballard R D (1980) Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet Scie Lett 48: 1–7

    Google Scholar 

  • Malahoff A, McMurtry G M, Wiltshire J C, Yeh H-W (1982) Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature (London) 298: 234–239

    Google Scholar 

  • Marsh J S (1973) Relationships between transform directions and alkaline igneous rock lineaments in Africa and South America. Earth Planet Sci Lett 18: 317–323

    Google Scholar 

  • Minniti M, Bonavia F F (1984) Copper-ore grade hydrothermal mineralization discovered in a seamount in the Tyrrhenian sea (Mediterrenean): is the mineralization related to porphyry- coppers or to base metal lodes? Marine Geol 59: 271–282

    Google Scholar 

  • Moberly R, Campbell J F (1984) Hawaiian hotspot volcanism mainly during geomagnetic normal intervals. Geology 12: 459–463

    Google Scholar 

  • Morgan W J (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94: 123–139

    Google Scholar 

  • Mottl M J (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94: 161–180

    Google Scholar 

  • Nehlig P, Juteau T (1988) Deep crustal seawater penetration and circulation at ocean ridges: evidence from the Oman ophiolite. Mar Geol 84: 209–228

    Google Scholar 

  • Nur A, Ben-Avraham Z (1982) Oceanic plateaus, the fragmentation of continents, and mountain building. J Geophys Res 87: 3644–3661

    Google Scholar 

  • Open University (1989) The ocean basins: their structure and evolution. Open Univ, London, and Pergamon, New York, 171 pp

    Google Scholar 

  • Oudin E, Constantinou G (1984) Black smoker chimney fragments in Cyprus sulphide deposits. Nature (London) 308: 349–352

    Google Scholar 

  • Penrose Conference Participants (1972) Penrose Field Conference Ophiolites. Geotimes 17: 24–25

    Google Scholar 

  • Peter J M, Scott S D (1988) Mineralogy, composition, and fluid-inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California. Can Mineral 26: 567–587

    Google Scholar 

  • Pirajno F (1980) Sub-seafloor mineralisation in rocks of the Matakaoa Volcanics around Lottin Point, East Cape, New Zealand. NZ J Geol Geophys 23: 313–334

    Google Scholar 

  • Prins P (1981) The geochemical evolution of the alkaline and carbonatite complexes of the Damaraland Igneous Province, South West Africa. Ann Univ Stellenbosch Ser A1 3: 145–278

    Google Scholar 

  • Robertson A H F (1975) Cyprus umbers: basalt-sediment relationships in a Mesozoic ocean ridge. J Geol Soc London 131: 511–531

    Google Scholar 

  • Rona P A (1980) TAG hydrothermal field: Mid-Atlantic Ridge crest at latitude 26 N. J Geol Soc London 137: 385–402

    Google Scholar 

  • Rona P A (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20: 1–104

    Google Scholar 

  • Rona P A (1986) Mineral deposits from sea-floor hot springs. Sci Am 254: 66–75

    Google Scholar 

  • Rona P A (1988) Hydrothermal mineralization at oceanic ridges. Can Mineral 26: 431–465

    Google Scholar 

  • Rona P A, Bostrom K, Laubier L, Smith K L (eds) (1983) Hydrothermal processes at seafloor spreading centers. Plenum, New York, 796 pp

    Google Scholar 

  • Rosenbauer R J, Bischoff J L (1983) Uptake and transport of heavy metals by seawater: A summary of the experimental results. In: Rona P A, Bostrom K, Laubier L, Smith K L (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 177–198

    Google Scholar 

  • Sato T (1972) Behaviour of ore-forming solutions in sea-water. Min Geol 22: 31–42

    Google Scholar 

  • Schilling J G, Thompson G, Kingsley R, Humphris S (1985) Hotspot migrating ridge interaction in the South Atlantic. Nature (London) 313: 187–191

    Google Scholar 

  • Scientific American (ed) (1969) The Ocean. Freeman, San Francisco

    Google Scholar 

  • Searle P L (1972) Mode of occurrence of the cupriferous pyrite deposits of Cyprus. Trans Inst Min Metall 81: B189–B197

    Google Scholar 

  • Seibold E, Berger W H (1982) The sea-floor. An introduction to marine geology. Springer, Berlin, Heidelberg, New York, 288 pp

    Google Scholar 

  • Seyfried W E, Janecky D R (1985) Heavy metal and sulfur transport during subcritical and supercritical hydrothermal alteration of basalt: Influence of fluid pressure and basalt composition and crystallinity. Geochim Cosmochim Acta, 49: 2545–2560

    Google Scholar 

  • Seyfried W E, Berndt M E, Seewald J S (1988) Hydrothermal alteration processes at mid-ocean ridges: constraints from diabase alteration experiments, hot spring fluids and composition of the oceanic crust. Can Mineral 26: 787–804

    Google Scholar 

  • Smalley T J (1990) The Matchless West Extension cupreous pyrite deposit, Namibia; a field-based study. In: Abstr Geocongress ’90 Cape Town. Geol Soc S Afr, pp 514–517

    Google Scholar 

  • Smewing J D, Christensen N I, Bartholomew I D, Browning P (1984) The structure of the oceanic upper mantle and lower crust as deduced from a northern section of the Oman ophiolite. Geol Soc Spec Publ 13: 41–54

    Google Scholar 

  • Spooner ETC, Fyfe W S (1973) Sub-sea-floor metamorphism, heat and mass transfer. Contr Mineral Petrol 42: 287–304

    Google Scholar 

  • Taylor H P (1983) Oxygen and hydrogen isotope studies of hydrothermal interactions at submarine and subaerial spreading centers. In: Rona P A, Bostrom K, Laubier L, Smith K L (eds) Hydrothermal processes at sea-floor spraeding centers. Plenum, New York, pp 83–139

    Google Scholar 

  • Thomas Crough S (1984) Seamounts as recorders of hot-spot epeirogeny. Geol Soc Am Bull 95: 3–8

    Google Scholar 

  • Thompson G, Mottl M J, Rona P A (1985) Morphology, mineralogy and chemistry of hydrothermal deposits from the TAG area, 26 N Mid-Atlantic Ridge. Chem Geol 49: 243–257

    Google Scholar 

  • Thompson G, Humphris S E, Schroeder B, Sulanowska M, Rona P A (1988) Active vents and massive sulfides at 26 N (TAG) and 23 N ( Snakepit) on the Mid-Atlantic-Ridge. Can Mineral 26: 697–711

    Google Scholar 

  • Toksoz M N, Uyeda S, Francheteau J (1980) Oceanic ridges and arcs. Developments in geotectonics, Vol 14. Elsevier, Amsterdam, 538 pp

    Google Scholar 

  • Turner F J, Verhoogen J (1960) Igneous and metamorphic petrology. McGraw-Hill, New York, 694 pp

    Google Scholar 

  • Viljoen R P, Viljoen M J (1975) ERTS-1 imagery: an appraisal of applications in geology and mineral exploration. Mineral Sei Eng 7: 132–168

    Google Scholar 

  • Von Damm K L, Edmond J M, Grant B, Measures C I (1985) Chemistry of submarine hydrothermal solutions at 21 N, East Pacific Rise. Geochim Cosmochim Acta 49: 2197–2220

    Google Scholar 

  • Von Damm K L, Grant B, Edmond J M (1983) Preliminary report on the chemistry of hydrothermal solutions at 21 North, East Pacific Rise. In: Rona P A, Bostrom K, Laubier L, Smith K L (eds) Hydrothermal processes at seafloor spreading centers. Plenum, New York, pp 369–390

    Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London, 466 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirajno, F. (1992). Hydrothermal Processes in Oceanic Crust and Related Mineral Deposits. In: Hydrothermal Mineral Deposits. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75671-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75671-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75673-3

  • Online ISBN: 978-3-642-75671-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics