Skip to main content

The Physiological Basis of the Act of Perceiving

  • Chapter
Relationships Between Perception and Action

Abstract

The close interaction of perception and action, an organizing theme of this book, can be studied with a variety of methods. This chapter examines the physiological organization of the interaction, drawing material principally from the oculomotor system where the interplay of perception and action is particularly clear and easy to study. Analyzing the oculomotor system requires a reinterpretation of sensory physiology: the passive sensory systems must be replaced by active perceptual systems, so that the organism can combine sensory and motor sources to interpret the visual world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.R. (1985). Cognitive psychology and its implications. New York: Freeman

    Google Scholar 

  • Bahill, A.T., Stark, L. (1975). The high-frequency burst of motoneuronal activity lasts about half the duration of saccadic eye movements. Mathematical Biosciences, 26, 319–323.

    Article  Google Scholar 

  • Blakemore, C., Cooper, G.F. (1970). Development of the brain depends on the visual environment. Nature, 228, 467–478.

    Google Scholar 

  • Bridgeman, B. (1977). Reply to Brooks and Fuchs: Exogenous and endogenous contributions to saccadic suppression. Vision Research, 17, 323–324.

    Article  Google Scholar 

  • Bridgeman, B. (1981). Cognitive factors in subjective stabilization of the visual world. Acta Psychologica, 48, 111–121.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., Palca, J. (1980). The role of microsaccades in high acuity observational tasks. Vision Research, 20, 813–817.

    Google Scholar 

  • Bridgeman, B. Hendry, D., Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15, 719–722.

    Google Scholar 

  • Bridgeman, B., Lewis, S., Heit, G., Nagle, M. (1979). The relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance, 5, 692–700.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., Kirch, M., Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29, 336–342.

    Google Scholar 

  • Brune, F., Lucking, C.H. (1969). Oculomotorik, Bewegungswahrnehmung und Raumkonstanz der Sehdinge. Der Nervenarzt, 40, 413–421.

    Google Scholar 

  • Burbeck, C., Kelly, D.H. (1982). A mechanism in the distal retina that accounts for the fading of stabilized images. Investigative Ophthalmology and Visual Science, 22 ( Suppl.), 50.

    Google Scholar 

  • Clark, M.R., Stark, L. (1975). Time optimal behavior of human saccadic eye movement. IEEE Transactions on Automatic Control, 20, 345–348.

    Google Scholar 

  • Collewijn, H. (1969). Changes in visual evoked responses during the fast phase of optokinetic nystagmus in the rabbit. Vision Research, 9, 803–814.

    Article  PubMed  Google Scholar 

  • Crawford, M.L.J., Smith, E.L. IH, Harwerth, R.S., von Noorden, G. (1984). Stereoblind monkeys have few binocular neurons. Investigative Ophthalmology and Visual Science, 25, 779–781.

    Google Scholar 

  • Darian-Smith, I., Sugitani, M., Heywood, J. (1982). Touching textured surfaces: Cells in somatosensory cortex respond both to finger movement and to surface features. Science, 218, 906–909.

    Google Scholar 

  • Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 1, 454–465.

    Article  Google Scholar 

  • Duncker, K. (1929). Uber induzierte Bewegung. Psychologische Forschung, 12, 130–259.

    Article  Google Scholar 

  • Gerrits, H.J.M., Stassen, H.P.W., van Eming, L.J.T.O. (1984). The role of drifts and saccades for the preservation of brightness perception. In L. Spillman B. Wooten (Eds.), Sensory experience, adaptation, and perception (pp 439–459 ). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gibson, J.J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Goldberg, M.E., Bushnell, M.C. (1979). Monkey frontal eye fields have a neuronal signal that precedes visually guided saccades. Society for Neurosciences Abstracts, 5, 779.

    Google Scholar 

  • Held, R., Hein, A. (1963). Movement–produced stimulation in the development of visually guided behavior. Journal of Comparative Physiological Psychology, 56, 872–876.

    Google Scholar 

  • Hering, E. (1977). The theory of binocular vision. (B. Bridgeman, Trans.). New York: Plenum (original work published 1868 ).

    Google Scholar 

  • Hess, E.H. (1956). Space perception in the chick. Scientific American, 195, 71–80.

    Article  Google Scholar 

  • Hirsch, H.V.B. (1972). Visual perception in cats after environmental surgery. Experimental Brain Research, 15, 405–423.

    Article  Google Scholar 

  • Hirsch, H.V.B., Spinelli, D.N. (1970). Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science, 168, 869–871.

    Google Scholar 

  • Hubel, D. Wiesel, T. (1965). Binocular interactions in striate cortex kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.

    Google Scholar 

  • Hubel, D., Wiesel, T, (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, 198, 1–59.

    Google Scholar 

  • Kasamatsu, T., Pettigrew, J. (1979). Preservation of binocularity after monocular deprivation in the striate cortex of kittens treated with 6–hydroxydopamine. Journal of Comparative Neurology, 185, 139–162.

    Google Scholar 

  • Kasamatsu, T., Watabe, K., Scholler, E., Heggelund, P. (1983). Restoration of neuronal plasticity in cat visual cortex by electrical stimulation of the locus coeruleus. Neuroscience Abstracts, 9, 911.

    Google Scholar 

  • Latour, P. (1962). Visual threshold during eye movements. Vision Research, 2, 261–262.

    Article  Google Scholar 

  • Lynch, J.C., Mountcastle, V., Talbot, W.H., Yin, T. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40, 362–389.

    Google Scholar 

  • Mack, A. (1970). An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception and Psychophysics, 8, 291–298.

    Article  Google Scholar 

  • MacKay, D. (1980). Elevation of usual threshold by displacement of retinal image. Nature, 225, 90–92.

    Article  Google Scholar 

  • Minsky, M., Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mitrani, L., Mateeff, S., Yakimoff, N. (1971). Is saccadic suppression really saccadic? Vision Research, 11, 1157–1161.

    Google Scholar 

  • Mize, R., Murphy, E.H. (1973). Selective visual experience fails to modify receptive field properties of rabbit striate cortical neurones. Science, 180, 320–323.

    Google Scholar 

  • Noton, D., Stark, L. (1971). Scanpaths in eye movements during pattern perception. Science, 171, 308–311.

    Google Scholar 

  • Pettigrew, J., Freeman, R.D. (1973). Visual experiences without lines: Effect on developing cortical neurons. Science, 182, 599–601.

    Google Scholar 

  • Riggs, L., Meiton, P., Morton, H. (1974). Suppression of visual phosphenes during saccadic eye movement. Vision Research, 14, 997–1011.

    Google Scholar 

  • Robinson, D.A. (1981). Control of eye movements. In V.B. Brooks (Ed.), Handbook of physiology Sec 1. The nervous system: Vol. II. Motor control, Part 2. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Schor, C., Bridgeman, B., Tyler, C.W. (1983). Spatial characteristics of static and dynamic stereoacuity in strabismus. Investigative Ophthalmology and Visual Science, 24, 1572–1579.

    Google Scholar 

  • Shannon, C., Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  • Shirokawa, T., Kasamatsu, T. (1984). Beta-adrenergic receptor mediates neuronal plasticity in visual cortex. Investigative Ophthalmology and Visual Science, 25 ( Suppl.), 214.

    Google Scholar 

  • Sparks, D., Pollack, J. (1977). The neural control of saccadic eye movements: the role of the superior colliculus. In B.A. Brooks F. Bajandas (Eds.), Eye movements. New York: Plenum.

    Google Scholar 

  • Spinelli, D.N., Jensen, F. (1979). Plasticity: The mirror of experience. Science, 203, 75–78.

    Google Scholar 

  • Spinelli, D.N., Hirsch, H.V.B., Phelps, R., Metzler, J. (1972). Visual experience as a determinant of the response characteristics of cotical receptive fields in cats. Experimental Brain Research, 15, 289–304.

    Google Scholar 

  • Stark, L.W., Ellis, S. (1981). Scanpaths revisited: Cognitive models direct active looking. In D. Fisher, R. Monty, J. Senders (Eds.), Eye movements: Cognition and visual perception. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Steinman, R., Haddad, G., Skavenski, A., Wyman, D. (1973). Miniature eye movement. Science, 181, 810–819.

    Google Scholar 

  • Stevens, J.K., Emerson, R., Gerstein, G., Kallos, T., Neufeld, G., Nichols, C., Rosenquist, A. (1976). Paralysis of the awake human: visual perceptions. Vision Research, 16, 93–98.

    Google Scholar 

  • Stryker, M., Sherk, H. (1975). Modification of cortical orientation of selectivity in the cat by restricted visual experience: A reexamination. Science, 190, 904–906.

    Google Scholar 

  • Stryker, M., Sherk, H., Leventhal, A., Hirsch, H.V.B. (1978). Physiological consequences for the cat’s visual cortex of effectively restricting early visual experience with oriented contours. Journal of Neurophysiology, 41, 896–909.

    Google Scholar 

  • Turkel, J., Gijsders, K., Pritchard, R. (1975). Environmental modification of oculomotor and neural function in cats, investigative Ophthalmology and Visual Science, 14 ( Suppl.), 63.

    Google Scholar 

  • Volkman, F., Riggs, L., White, K., Moore, R. (1978). Contrast sensitivity during saccadic eye movements. Vision Research, 18, 1193–1199.

    Google Scholar 

  • Westheimer, G., Blair, S.M. (1973). Oculomotor defects in cerebellectomized monkeys. Investigative Ophthalmology, 12, 618–621.

    Google Scholar 

  • Wiesel, T., Hubel, D. (1965). Extent of recovery from the effects of visual deprivation in kittens. Journal of Neurophysiology, 28, 1060–1072.

    Google Scholar 

  • Winterson, B., Collewijn, H. (1976). Microsaccades during finely guided visuomotor tasks. Vision Research, 16, 1387–1390.

    Google Scholar 

  • Yarbus, A.L. (1967). Eye movements and vision (L.A. Riggs, Trans.). New York: Plenum.

    Google Scholar 

  • Zuber, B., Stark, L. (1966). Saddadic suppresson: elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bridgeman, B. (1990). The Physiological Basis of the Act of Perceiving. In: Neumann, O., Prinz, W. (eds) Relationships Between Perception and Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75348-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75348-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75350-3

  • Online ISBN: 978-3-642-75348-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics