Skip to main content

Temperature Dependence of Thermal and Nonthermal Regulation: Hypothalamic Thermo- and Osmoregulation in the Duck

  • Conference paper
Thermoreception and Temperature Regulation

Abstract

Temperature dependence of central interneurons was assumed first by Hammel in 1965 to account for the influence of hypothalamic temperature (Thy) on thermoregulatory activities. Specific thermosensory inputs were assumed to be generated in the hypothalamic thermointegrative network, without involving thermoreceptors in the strict sense of the word, by a Q10 ≥ 1 for transmission of cold signals and a Q10 ≫ 1 for transmission of warm signals from peripheral thermoreceptors. A more general view of this idea has been suggested by the unexpected disclosure of inappropriate thermoregulatory responses to thermal stimulation of the avian hypothalamus (Simon et al. 1976). While not compatible with the idea of temperature dependence as a specific mode of temperature transduction, inappropriate thermoresponsiveness of the avian hypothalamus could be accounted for by assuming a Q10 > 1 for warm signal transmission and a Q10 ≫ 1 for cold signal transmission at the hypothalamic level. Inherent to both hypotheses is the assumption of an overall Q10 > 1 of intrahypothalamic transmission and, consequently, a decrease in gain of input-to-effector coupling with decreasing Thy (Simon et al. 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boulant JA (1980) Hypothalamic control of thermoregulation. Neurophysiological basis. In: Handbook of the hypothalamus, Morgane PJ, Panksepp J (eds) Dekker, New York, pp 1–82.

    Google Scholar 

  • Görke K, Necker R, Rautenberg W (1979) Neurophysiological investigation of spinal reflexes at different temperatures of the spinal cord in birds and reptiles. Pflügers Arch 35:269–271.

    Google Scholar 

  • Gray DA, Erasmus T (1988) Plasma arginine vasotocin and angiotensin II in the water-deprived Kelp gull (Larus dominicanus), Cape gannet (Sula capensis) and Jackass penguin (Spheniscus demersus). Comp Biochem Physiol 91A:727–732.

    Article  CAS  Google Scholar 

  • Gray DA, Simon E (1983) Mammalian and avian antidiuretic hormone: studies related to possible species variations in osmoregulatory systems. J Comp Physiol 151:241–246.

    CAS  Google Scholar 

  • Hammel HT (1965) Neurons and temperature regulation. In: Physiological controls and regulations. Yamamoto WS, Brobeck JR (eds) Saunders, Philadelphia, pp 71–97.

    Google Scholar 

  • Hammel HT (1968) Regulation of internal body temperature. Ann Rev Physiol 30:641–710.

    Article  CAS  Google Scholar 

  • Hayward JN, Baker MA (1968) Diuretic and thermoregulatory responses to preoptic cooling in the monkey. Am J Physiol 214:843–850.

    PubMed  CAS  Google Scholar 

  • Hori T, Simon-Oppermann C, Gray DA, Simon E (1986) Thermally induced changes in neural and hormonal control of osmoregulation in a bird with salt glands (Anas platyrhynchos). Pflügers Arch 407:414–420.

    Article  PubMed  CAS  Google Scholar 

  • Inomoto T, Mercer JB, Simon E (1982) Opposing effects of hypothalamic cooling on threshold and sensitivity of metabolic response to body cooling in rabbits. J Physiol (Lond) 322:139–150.

    CAS  Google Scholar 

  • Inomoto T, Mercer JB, Simon E (1983) Interaction between hypothalamic and extrahypothalamic body temperatures in the control of panting in rabbits. Pflügers Arch 398:142–146.

    Article  PubMed  CAS  Google Scholar 

  • Nadel ER, Fortney SM, Wenger CB (1980) Effect of hydration state on circulatory and thermal regulation. J Appl Physiol 49:715–721.

    PubMed  CAS  Google Scholar 

  • Nakashima T, Hori T, Kiyohara T, Shibata M (1985) Osmosensitivity of preoptic thermosensitive neurons in hypothalamic slices in vitro. Pflügers Arch 405:112–117.

    Article  PubMed  CAS  Google Scholar 

  • Pierau FK, Klee MR, Klussmann FW (1976) Effect of temperature on postsynaptic potentials of cat spinal motoneurons. Brain Res 114:21–34.

    Article  PubMed  CAS  Google Scholar 

  • Robertson GL, Athar S, Shelton RL (1977) Osmotic control of Vasopressin function. In: Disturbances in body fluid osmolality. Andreoli TE, Granthum JJ, Rector FC (eds) Am Physiol Soc Bethesda, pp 125-148.

    Google Scholar 

  • Silva NL, Boulant JA (1984) Effects of osmotic pressure, glucose and temperature on neurons in preoptic tissue slices. Am J Physiol 247:R335–R345.

    PubMed  CAS  Google Scholar 

  • Simon E, Simon-Oppermann C, Hammel HT, Kaul R, Maggert J (1976) Effects of altering rostral brain stem temperature on temperature regulation in the Adelie penguin (Psyogocelis adeliae). Pflügers Arch 362:7–13.

    Article  PubMed  CAS  Google Scholar 

  • Simon E, Hammel HT, Oksche A (1977) Thermosensitivity of single units in the hypothalamus of the conscious Pekin duck. J Neurobiol 8:523–535.

    Article  PubMed  CAS  Google Scholar 

  • Simon E, Pierau FK, Taylor DCM (1986) Central and peripheral control of effectors in homeothermic temperature regulation. Physiol Rev 66:235–300.

    PubMed  CAS  Google Scholar 

  • Simon-Oppermann C, Simon E, Jessen C, Hammel HT (1978) Hypothalamic thermosensitivity in conscious Pekin ducks. Am J Physiol 235:R130–R140.

    PubMed  CAS  Google Scholar 

  • Simon-Oppermann C, Hammel HT, Simon E (1979) Hypothalamic temperature and osmoregulation in the Pekin duck. Pflügers Arch 378:213–221.

    Article  PubMed  CAS  Google Scholar 

  • Simon-Oppermann C, Simon E (1980) Cold defence activity of Pekin ducks during general hypothermia in comparison to heat defense during hyperthermia. Effect of POAH cooling on threshold and gain. In: Szelényi Z, Székely M (eds) Contributions to thermal physiology. Akad Kiadó, Budapest, pp 89–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simon, E., Nolte, P. (1990). Temperature Dependence of Thermal and Nonthermal Regulation: Hypothalamic Thermo- and Osmoregulation in the Duck. In: Bligh, J., Voigt, K., Braun, H.A., Brück, K., Heldmaier, G. (eds) Thermoreception and Temperature Regulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75076-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75076-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75078-6

  • Online ISBN: 978-3-642-75076-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics