Skip to main content

Intracellular pH of Cardiac Cells: Hormonal Regulation and Role in Ischemia

  • Conference paper
Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction
  • 64 Accesses

Abstract

It is important that the intracellular pH (pHi) of cardiac cells be maintained at a precise and defined value. This is because a change in pHi dramatically modifies myocardial contractility. As a rule, intracellular acidosis reduces myocardial contractility, whereas alkalosis produces a positive inotropic effect. These effects are fully reversible. The inotropic effects of changes in pHi are mainly due to a modified sensitivity of the myofilaments to Ca2+ [1]. In addition, altered pHi values in cardiac cells modify the diastolic level of intracellular Ca2+ [2, 3] and the magnitude of the Ca2+ transient that underlies contraction [4], possibly by modifying the release of Ca2+ from the sarcoplasmic reticulum [1,5]. Changes in extracellular pH also modify contractility, either in a direct way by modifying the electrical properties of the plasma membrane [6, 7] or in an indirect way by changing pHi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fabiato A, Fabiato F (1978) Effect of pH on the myofilaments and the sarcoplasmic reticu-lum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond) 276:233–255.

    CAS  Google Scholar 

  2. Allen DG, Eisner DA, Orchard CH (1984) Characterization of oscillations of intracellular calcium concentration in ferret ventricular muscle. J Physiol (Lond) 352:113–128.

    CAS  Google Scholar 

  3. Bers DM, Ellis D (1982) Intracellular calcium and sodium activity in sheep heart Purkinje fibers. Effects of changes of external sodium and intracellular pH. Pflugers Arch 393:171–178.

    Article  PubMed  CAS  Google Scholar 

  4. Allen DG, Orchard CH (1983) The effect of changes of pH on intracellular calcium transient in mammalian cardiac muscle. J Physiol (Lond) 335:555–567.

    CAS  Google Scholar 

  5. Vaughan-Jones RD, Eisner DA, Lederer WJ (1987) Effect of changes of intracellular pH on contraction in sheep cardiac Purkinje fibers. J Gen Physiol 89:1015–1032.

    Article  PubMed  CAS  Google Scholar 

  6. Kohlhardt M, Happ K, Figulla HR (1976) Influence of low extracellular pH upon the Ca inward current and isometric contractile force in mammalian ventricular myocardium. Pflugers Arch 366:31–38.

    Article  PubMed  CAS  Google Scholar 

  7. Chesnais JM, Coraboeuf E, Sauviat MP, Vassas JM (1975) Sensitivity to H+, Li+ and Mg2+ ions of the slow inward sodium current in frog atrial fibres. J Mol Cell Cardiol 7:627–642.

    Article  PubMed  CAS  Google Scholar 

  8. Ellis D, Noireaud J (1987) Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J Physiol (Lond) 383:125–141.

    CAS  Google Scholar 

  9. Frelin C, Vigne P, Lazdunski M (1985) The role of the Na+/H+ exchange system in the regulation of the internal pH in cultured cardiac cells. Eur J Biochem 149:1–4.

    Article  PubMed  CAS  Google Scholar 

  10. Vaughan-Jones RD (1982) Chloride activity and its control in skeletal and cardiac muscle. Philos Trans R Soc Lond 299:537–548.

    Article  CAS  Google Scholar 

  11. Freiin C, Vigne P, Barbry P, Lazdunski M (1987) Molecular properties of amiloride action and of its Na+ transporting targets. Kidney Int 32:785–793.

    Article  Google Scholar 

  12. Freiin C, Vigne P, Ladoux A, Lazdunski M (1988) The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem 174:3–14.

    Article  Google Scholar 

  13. Freiin C, Vigne P, Barbry P, Lazdunski M (1986) Interaction of guanidinium and guanidin-ium derivatives with the Na+/H+ exchange system. Eur J Biochem 154:241–245.

    Article  Google Scholar 

  14. Vigne P, Freiin C, Cragoe EJ, Lazdunski M (1984) Structure activity relationship of amiloride and certain of its analogues in relation to the blockade of the Na+/H+ exchange system. Mol Pharmacol 25:131–136.

    PubMed  CAS  Google Scholar 

  15. Barbry P, Chassande O, Vigne P, Freiin C, Ellory C, Cragoe EJ, Lazdunski M (1987) Purification and subunit structure of the [3H]phenamil receptor associated with the renal apical Na+ channel. Proc Natl Acad Sci USA 84:4836–4840.

    Article  PubMed  CAS  Google Scholar 

  16. Freiin C, Vigne P, Lazdunski M (1984) The role of the NaVH+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. J Biol Chem 259:8880–8885.

    Google Scholar 

  17. Seiler SM, Cragoe EJ, Jones LR (1985) Demonstration of a Na+/H+ exchange activity in purified canine cardiac sarcolemmal vesicles. J Biol Chem 260:4869–4876.

    PubMed  CAS  Google Scholar 

  18. Green RD, Freiin C, Vigne P, Lazdunski M (1986) The activity of the Na+/H+ antiporter in cultured cardiac cells is dependent on the culture conditions used. FEBS Lett 196:163–166.

    Article  PubMed  CAS  Google Scholar 

  19. Vigne P, Freiin C, Lazdunski M (1984) The Na+-dependent regulation of the internal pH in chick skeletal muscle cells. The role of the Na+/H+ exchange system and its dependence on internal pH. EMBO J 3:1865–1870.

    PubMed  CAS  Google Scholar 

  20. Vigne P, Frelin C, Lazdunski M (1985) The NaVH+ antiport is activated by serum and phorbol esters in proliferating myoblasts but not in differentiated myotubes. J Biol Chem 260:8008–8013.

    PubMed  CAS  Google Scholar 

  21. Kaila K, Vaughan-Jones RD (1987) Influence of sodium-hydrogen exchange on intracellu-lar pH, sodium and tension in sheep cardiac Purkinje fibres. J Physiol (Lond) 390:93–118.

    CAS  Google Scholar 

  22. Eisner DA, Lederer WJ, Vaughan-Jones RD (1984) The quantitative relationship between twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J Physiol (Lond) 355:251–266.

    CAS  Google Scholar 

  23. Hearse DJ (1977) Reperfusion of the ischemic myocardium. J Mol Cell Cardiol 9:605–616.

    Article  PubMed  CAS  Google Scholar 

  24. Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10:641–668.

    Article  PubMed  CAS  Google Scholar 

  25. Rendlund DG, Gerstenblith G, Lakatta EG, Jacobus WE, Kallman CH, Weisfeldt ML (1984) Perfusate sodium during ischemia modifies post-ischemic functional and metabolic recovery in the rabbit heart. J Mol Cell Cardiol 16:795–802.

    Article  Google Scholar 

  26. Lazdunski M, Freiin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042.

    Article  PubMed  CAS  Google Scholar 

  27. Bidard J-N, Rossi B, Renaud J-F, Lazdunski M (1984) A search for an ‘ouabain’-like substance from the electric organ of Electrophorus electricus which led to arachidonic acid and related fatty acids. Biochim Biophys Acta 769:245–252.

    Article  PubMed  CAS  Google Scholar 

  28. Greef K, Kohler E (1975) Animal experiments on the effect of triamterene and amiloride in heart and circulation and the toxicity of digoxin. Arzneimittelforschung 25:1766–1769.

    Google Scholar 

  29. Jounella A, Pyorala K (1975) Effects of amiloride on digitalis induced electrocardiographic changes. Ann Clin Res 7:65–70.

    Google Scholar 

  30. Seller RH, Graco J, Banach S, Reth R (1975) Increasing the inotropic effect and toxic dose of digitalis by the administration of antikaliuretic drugs. Further evidence for a cardiac effect of diuretic agents. Am Heart J 90:56–67.

    Article  PubMed  CAS  Google Scholar 

  31. Kennedy RH, Berlin JR, Ng YC, Akera T, Brody TM (1986) Amiloride: effects on myocar-dial force of contraction, sodium pump and Na+/Ca2+ exchange. J Mol Cell Cardiol 18:177–188.

    Article  PubMed  CAS  Google Scholar 

  32. Kim D, Smith TW (1986) Effects of amiloride and ouabain on contractile state, Ca and Na fluxes and Na content in cultured chick heart cells. Mol Pharmacol 29:363–371.

    PubMed  CAS  Google Scholar 

  33. Marchese AC, Hill JA, Xie P, Strauss HC (1985) Electrophysiologic effects of amiloride in canine Purkinje fibres: evidence for a delayed effect on repolarization. J Pharmacol Exp Ther 232:485–495.

    PubMed  CAS  Google Scholar 

  34. Lee, CO (1985) 200 years of digitalis: the emerging central role of the sodium ion in the control of cardiac force. Am J Physiol 249:C367–C378.

    PubMed  CAS  Google Scholar 

  35. Ghysel-Burton J, Godfraind T (1986) Inotropic effect of ouabain in guinea pig pretreated with amiloride and ethylisopropylamiloride. Arch Int Pharmacodyn Ther 280:332–333.

    Google Scholar 

  36. Finet M, Godfraind T (1986) Selective inhibition by ethylisopropylamiloride of the positive inotropic effect evoked by low concentrations of ouabain in rat isolated ventriculs. Br J Pharmacol 89:533–538.

    PubMed  CAS  Google Scholar 

  37. Baroin A, Garcia-Romeu F, Lamarre T, Motais R (1984) A transient sodium-hydrogen system induced by catecholamines in erythrocytes of rainbow trout Salmo gardnieri. J Physiol (Lond) 356:21–31.

    CAS  Google Scholar 

  38. Reuss L, Petersen UK (1985) Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 85:409–429.

    Article  PubMed  CAS  Google Scholar 

  39. Chaillet JR, Amsler K, Boron WF (1986) Optical measurements of intracellular pH in single LLC-PK1 cells: demonstration of Cl-/HCO- 3 exchange. Proc Natl Acad Sci USA 83:522–526.

    Article  PubMed  CAS  Google Scholar 

  40. L’Allemain G, Paris S, Pouysségur J (1985) Role of Na+-dependent Cl-/HCO- 3 exchange in regulation of intracellular pH in fibroblasts. J Biol Chem 260:4877–4883.

    PubMed  Google Scholar 

  41. Ladoux A, Krawice I, Cragoe EJ, Abita JP, Frelin C (1987) Properties of the Na+-depend-ent C1-/HCO- 3 exchange system in U937 human leukemic cells. Eur J Biochem 170:43–49.

    Article  PubMed  CAS  Google Scholar 

  42. Jentsch TJ, Stahlknecht TR, Hollwede H, Fischer DG, Keller SK, Wiederholt M (1985) A bicarbonate dependent process inhibitable by disulfonic stilbenes and a Na+/H+ exchange mediate 22Na+ uptake into bovine corneal endothelium. J Biol Chem 260:795–801.

    PubMed  CAS  Google Scholar 

  43. Grassl SM, Aronson PS (1986) HCO- 3 transport in basolateral membrane vesicles isolated from rat renal cortex. J Biol Chem 261:8778–8783.

    PubMed  CAS  Google Scholar 

  44. Vaughan-Jones RD (1986) An investigation of chloride-bicarbonate exchange in the sheep crdiac Purkinje fibre. J Physiol (Lond) 379:377–406.

    CAS  Google Scholar 

  45. Heinemeyer D, Bay W (1987) Intracellular pH in quiescent and stimulated ventricular myocardium. Effect of extracellular chloride concentraton. Pflugers Arch 409:142–144.

    Article  PubMed  CAS  Google Scholar 

  46. VanHeel B, DeHemptinne A, Leusen I (1984) Analysis of C1-/HCO- 3 exchange during recovery from intracellular acidosis in cardiac Purkinje strands. Am J Physiol 246:C391–C400.

    PubMed  CAS  Google Scholar 

  47. Olsnes S, Tonnessen TI, Sandvig K (1986) pH regulated anion antiport in nucleated mammalian cells. J Cell Biol 101:967–971.

    Article  Google Scholar 

  48. Reuss L (1987) Cyclic AMP inhibits C1-/HCO- 3 exchange in the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 90:173–196.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frelin, C., Vigne, P., Lazdunski, M. (1989). Intracellular pH of Cardiac Cells: Hormonal Regulation and Role in Ischemia. In: Brachmann, J., Schömig, A. (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74317-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74317-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74319-1

  • Online ISBN: 978-3-642-74317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics