Skip to main content

Compound Eyes and the World of Vision Research

  • Conference paper
Facets of Vision

Abstract

The invitation to provide this introductory chapter suggested that I present my views on the past, present and future of compound eye research, including short side steps into related work on vertebrate eyes. The result is a contribution with two themes. The opening section provides an overview of the research on compound eyes that has been accomplished since the time of Sigmund Exner’s landmark book on arthropod optics and hints at the more detailed reviews that follow. Although it provides little more than a historical outline, for those new to the field it may help to anchor seminal events in time and to show the relationship to other currents in vision research. The subsequent sections illustrate on a limited front how work on arthropods relates both to vision in other animals as well as to much broader biological issues, while suggesting some questions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Applebury ML, Hargrave PA (1986) Molecular biology of the visual pigments. Vision Res 26:1881–1895.

    Article  PubMed  CAS  Google Scholar 

  • Autrum H, Zettler F, Järvilehto M (1970) Post-synaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora. Z Vergl Physiol 70:414–424.

    Article  Google Scholar 

  • Barlow HB (1952) The size of ommatidia in apposition eyes. J Exp Biol 29:667–674.

    Google Scholar 

  • Barlow HB (1957) Purkinje shift and retinal noise. Nature (London) 179:255–256.

    Article  CAS  Google Scholar 

  • Barlow HB (1982) What causes trichromacy? A theoretical analysis using comb-filtered spectra. Vision Res 22:635–643.

    Article  PubMed  CAS  Google Scholar 

  • Bateson W (1916) review of The mechanism of Mendelian heredity, by TH Morgan, AH Sturtevant, HJ Muller and CB Bridges. Science 44:536–543.

    Article  Google Scholar 

  • Baylor DA, Mathews G, Yau K-W (1980) Two components of electrical dark noise in toad retinal rod outer segments. J Physiol 309:591–621.

    PubMed  CAS  Google Scholar 

  • Bernard GD (1982) Noninvasive optical techniques for probing insect photoreceptors. In: Packer L, Part H (eds) Visual pigments and purple membranes, vol 81. Methods in enzymology. Academic Press, New York London, pp 752–759.

    Chapter  Google Scholar 

  • Bernard GD (1983a) Dark-processes following photoconversion of butterfly rhodopsin. Biophys Struct Mech 9:277–286.

    Article  CAS  Google Scholar 

  • Bernard GD (1983b) Bleaching of rhabdoms in eyes of intact butterflies. Science 219:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Bertholf LM (1931) The distribution of stimulative efficiency in the ultraviolet spectrum for the honey bee. J Agr Res 43:703–713.

    Google Scholar 

  • Bowmaker JD, Mollon JD, Jacobs GH (1983) Microspectrophotometric results for old and new world primates. In: Mollon JD, Sharpe LT (eds) Color vision. Physiology and psychophysics. Academic Press, New York London, pp 57–68.

    Google Scholar 

  • Bowmaker JK, Jacobs GH, Mollon JD (1987) Polymorphism of photopigment in the squirrel monkey: a sixth phenotype. Proc R Soc Lond Ser B 231:383–390.

    Article  CAS  Google Scholar 

  • Burkhardt D (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp Soc Exp Biol 16:86–109.

    Google Scholar 

  • Burkhardt D, Autrum H (1960) Die Belichtungspotentiale einzelner Sehzellen von Calliphora erythrocephala Meig. Z Naturforsch 15b:612–616.

    CAS  Google Scholar 

  • de Couet HG, Stowe S, Blest AD (1984) Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors. J Cell Biol 98:834–846.

    Article  PubMed  Google Scholar 

  • Cowman AF, Zucker CS, Rubin GM (1986) An opsingene expressed in only one photoreceptorcell type of the Drosophila eye. Cell 44:705–710.

    Article  PubMed  CAS  Google Scholar 

  • Cundall RB (1964) The kinetics of cis-trans isomerizations. Prog Reaction Kinet 2:165–215.

    CAS  Google Scholar 

  • Danneel R, Zeutschel B (1957) Uber den Feinbau der Retinula bei Drosophila melanogaster. Z Naturforsch 12b:580–583.

    Google Scholar 

  • Dartnall HJA (1975) Assessing the fitness of visual pigments for their photic environment. In: Ali MA (ed) Vision in fishes. Plenum Press, New York, pp 543–563.

    Google Scholar 

  • Dartnall HJA, Bowmaker JK, Mollon JD (1983) Microspectrophotometry of human photoreceptors. In: Mollon JD, Sharpe LT (eds) Color vision. Physiology and psychophysics. Academic Press, New York London, pp 69–80.

    Google Scholar 

  • Daumer K (1956) Reizmetrische Untersuchungen des Farbensehens der Bienen. Z Vergl Physiol 38:413–478.

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Franz-Deuticke, Leipzig Wien.

    Book  Google Scholar 

  • Farns JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668.

    Article  Google Scholar 

  • Feiler R, Harris WA, Kirschfeld K, Wehrahn C, Zuker CS (1988) Targeted misexpression of a Drosophila gene leads to altered visual function. Nature (London) 333:737–741.

    Article  CAS  Google Scholar 

  • Findlay JBC (1986) The biosynthetic, functional and evolutionary implications of the structure of rhodopsin. In: Stieve H (ed) The molecular mechanism of photoreception. Dahlem Konferenzen. Springer, Berlin Heidelberg New York Tokyo, pp 11–30.

    Chapter  Google Scholar 

  • Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238.

    Google Scholar 

  • Frisch K von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH (1958) The visual system of the honeybee. Proc Natl Acad Sci 44:123–126.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH (1964) The visual system of insects. In: Rockstein M (ed) The physiology of insecta, vol 1, chap 10, 1st edn. Academic Press, New York London, pp 397–462.

    Google Scholar 

  • Goldsmith TH (1989) The evolution of visual pigments and colour vision. In:Gouras P (ed) The perception of color, vol 7. Vision and visual dysfunction. MacMillan (in press).

    Google Scholar 

  • Goldsmith TH, Bernard GD (1985) Visual pigments of invertebrates. Photochem Photobiol 42:805–809.

    Article  CAS  Google Scholar 

  • Goldsmith TH, Philpott DE (1957) The microstructure of the compound eyes of insects. J Biophys Biochem Cytol 3:429–440.

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith TH, Wehner R (1977) Restriction of rotational and translational diffusion of pigment in the membranes of a rhabdomeric photoreceptor. J Gen Physiol 70:453–490.

    Article  PubMed  CAS  Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 145–224.

    Google Scholar 

  • Hamdorf K, Schwemer J, Gogala M (1971) Insect visual pigment sensitive to ultraviolet light. Nature (London) 231:458–459.

    Article  CAS  Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 155–174.

    Google Scholar 

  • Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A 161:201–213.

    Article  PubMed  CAS  Google Scholar 

  • Hartline HK, Graham CH (1932) Nerve impulses from single receptors in the eye. J Cell Comp Physiol 1:277–295.

    Article  Google Scholar 

  • Hartline HK, Ratliff F (1957) Inhibitory interactions of receptor units in the eyes of Limulus. J Gen Physiol 40:357–376.

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B (1951) Ommatidienraster und afferente Bewegungsintegration (Versuche an dem Russelkäfer Chlorophanus miridis). Z Vergl Physiol 33:301–326.

    Google Scholar 

  • Heisenberg M (1979) Genetic approach to a visual system. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 665–679.

    Google Scholar 

  • Jahn TL, Wulff VJ (1943) Electrical aspects of a diurnal rhythm in the eye of Dytiscus fasciventris. Physiol Zool 16:101–109.

    Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3:248–270.

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitizing pigment in fly photoreceptors. Nature (London) 269:386–390.

    Article  CAS  Google Scholar 

  • Kuwabara M, Naka K-I (1959) Response of a single retinula cell to polarized light. Nature (London) 184:455–456.

    Article  Google Scholar 

  • Kunze P (1969) Eye glow in the moth and superposition theory. Nature (London) 223:1172–1174.

    Article  Google Scholar 

  • Kunze P (1979) Apposition and superposition eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502.

    Google Scholar 

  • Land M (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature (London) 263:764–765.

    Article  CAS  Google Scholar 

  • Land M (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 472–592.

    Google Scholar 

  • Lubbock J (1882) Ants, bees, and wasps. A record of observations on the habits of the social Hymenoptera, 2nd edn. Kegan Paul, Trench.

    Book  Google Scholar 

  • Lythgoe JN (1972) List of vertebrate visual pigments. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 604–624.

    Google Scholar 

  • Lythgoe JN (1984) Visual pigments and environmental light. Vision Res 24:1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • MacNichol EF, Jr., Levine JS, Mansfield RJW, Lipetz LE, Collins BA (1983) Microspectrophotometry of visual pigments in primate photoreceptors. In: Mollon JD, Sharpe LT (eds) Color vision. Physiology and psychophysics. Academic Press, New York London, pp 13–38.

    Google Scholar 

  • Mallock A (1894) Insect sight and the defining power of composite eyes. Proc R Soc London Ser B 55:85–90.

    Article  Google Scholar 

  • Millecchia R, Mauro A (1969a) The ventral photoreceptor cells of Limulus. II. The basic photoresponse. J Gen Physiol 54:310–330.

    Article  PubMed  CAS  Google Scholar 

  • Millecchia R, Mauro A (1969b) The ventral photoreceptor cells of Limulus. III. A voltage-clamp study. J Gen Physiol 54:331–351.

    Article  PubMed  CAS  Google Scholar 

  • Miller WH (1957) Morphology of the ommatidia of the compound eye of Limulus. J Biophys Biochem Cytol 3:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Montell CK, Jones C, Zuker C, Rubin G (1987) A second opsin gene expressed in the ultraviolet sensitive R7 photoreceptor cells of Drosophila melanogaster. J Neurosci 7:1558–1566.

    PubMed  CAS  Google Scholar 

  • Naka K-I (1961) Recording of retinal action potentials from single cells of the insect compound eye. J Gen Physiol 44:571–584.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Hogness DS (1983) Isolation, sequence analysis and intron-exon arrangement of the gene encoding bovine rhodopsin. Cell 34:807–814.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Hogness DS (1984) Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81:4851–4855.

    Article  PubMed  CAS  Google Scholar 

  • Nathans J, Thomas D, Hogness DS (1986) Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232:193–202.

    Article  PubMed  CAS  Google Scholar 

  • O’Tousa JE, Baehr W, Martin RL, Hirsh I, Pak WL, Applebury ML (1985) The Drosophila nina E gene encodes an opsin. Cell 40:839–850.

    Article  PubMed  Google Scholar 

  • Pollock JA, Benzer S (1988) Transcript localization of four opsin genes in the three visual organs in Drosophila: RH2 is ocellus specific. Nature (London, 333:779–782).

    Article  CAS  Google Scholar 

  • Rossel S, Wehner R (1984) How bees analyze the polarization patterns in the sky. J Comp Physiol A 154:607–615.

    Article  Google Scholar 

  • Scholes JH (1964) Discrete subthreshold potentials from the dimly lit insect eye. Nature (London) 202:572–573.

    Article  CAS  Google Scholar 

  • Schwemer J (1983) Pathways of visual pigment regeneration of fly photoreceptor cells. Biophys Struct Mech 9:287–298.

    Article  CAS  Google Scholar 

  • Schwemer J, Pepe IM, Paulsen R, Cugnoli C (1984) Light-induced trans-cis isomerization of retinal by a protein from honeybee retina. J Comp Physiol A 154:549–554.

    Article  CAS  Google Scholar 

  • Shaw SR (1969) Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res 9:1031–1041.

    Article  PubMed  CAS  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 441–502.

    Google Scholar 

  • Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135.

    Article  Google Scholar 

  • Stavenga DG (1975) Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem Photobiol 21:105–110.

    Article  PubMed  CAS  Google Scholar 

  • Stein PJ, Brammer JD, Ostroy SE (1979) Renewal of opsin in the photoreceptor cells of the mosquito. J Gen Physiol 74:565–582.

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Nässel DR (1981) Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 1–132.

    Google Scholar 

  • Vogt K (1975) Zur Optik des Flusskrebsauges. Z Naturforsch 30c:691.

    Google Scholar 

  • Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c:329–333.

    CAS  Google Scholar 

  • White RH, Lord E (1975) Diminution and enlargement of the mosquito rhabdom in light and darkness. J Gen Physiol 65:583–598.

    Article  PubMed  CAS  Google Scholar 

  • Wolken JJ, Capenos J, Turano A (1957) Photoreceptor structures. III Drosophila melanogaster. J Biophys Biochem Cytol 3:441–448.

    Article  PubMed  CAS  Google Scholar 

  • Yeandle S (1958) Electrophysiology of the visual system. Discussion. Am J Ophthalmol 46:82–87.

    Google Scholar 

  • Zuker CS, Montell C, Jones K, Laverty T, Rubin GM (1987) A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: Homologies with other signal-transducing molecules. J Neurosci 7:1550–1556.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldsmith, T.H. (1989). Compound Eyes and the World of Vision Research. In: Stavenga, D.G., Hardie, R.C. (eds) Facets of Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74082-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74082-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74084-8

  • Online ISBN: 978-3-642-74082-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics