Skip to main content

The Identification and Significance of Substructural Domains

  • Chapter
Methods in Protein Sequence Analysis

Abstract

Several quite independent lines of evidence provide increasingly forceful arguments for the importance of substructural domains in the biological function of proteins. Models based on these arguments describe independently folded domains with unique binding capacities. Interactions between these domains offer opportunities for synergism and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References Cited

  • Beavo J (1988) Multiple isozymes of cyclic nucleotide phosphodiesterase. In: Greengard P, Robison GA (eds) Advances in second messenger and phosphoprotein research, Volume 22. Raven Press, New York, in press

    Google Scholar 

  • Blumenthal DK, Takio K, Edelman AM, Charbonneau H, Titani K, Walsh KA, Krebs EG (1985) Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 82: 3187–3191

    Article  PubMed  CAS  Google Scholar 

  • Charbonneau H, Beier N, Walsh KA, Beavo JA (1986) Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci USA 83: 9308–9312

    Article  PubMed  CAS  Google Scholar 

  • Coggins JR, Boocock MR, Campbell MS, Chaudhuri S, Lambert JM, Lewendon A, Mousdale DM, Smith DDS (1985) Functional domains involved in aromatic amino acid biosynthesis. Biochem Soc Trans 13: 299–303

    PubMed  CAS  Google Scholar 

  • Cohen S, Carpenter G, King L (1980) Epidermal growth factor-receptor-protein kinase interactions: co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255: 4834–4842

    PubMed  CAS  Google Scholar 

  • Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307: 521–527

    Article  PubMed  CAS  Google Scholar 

  • Edelman AM, Takio K, Blumenthal DK, Hansen RS, Walsh KA, Titani K, Krebs EG (1985) Characterization of the calmodulin-binding and catalytic domains in skeletal muscle myosin light chain kinase. J Biol Chem 260: 11275–11285

    PubMed  CAS  Google Scholar 

  • Fretto LJ, Fowler WE, McCaslin DR, Erickson HP, McKee PA (1986) Substructure of human von Willebrand factor, proteolysis by V8 and characterization of two functional domains. J Biol Chem 261: 15679–15689

    PubMed  CAS  Google Scholar 

  • Gilbert W (1978) Why genes in pieces? Nature 271: 501

    Article  PubMed  CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ, Edelman AM, Blumenthal DK, Krebs EG (1987) Rabbit skeletal muscle myosin light chain kinase: the calmodulin binding domain as a potential active site-directed inhibitory domain. J Biol Chem 262: 11958–11963

    PubMed  CAS  Google Scholar 

  • Krebs E (1986) The enzymology of control by phosphorylation. In: Boyer PD, Krebs EG (eds) The Enzymes, 3rd edition, Volume 17. Academic Press, London, p. 1

    Google Scholar 

  • Marti T, Rosselet SJ, Titani K, Walsh KA (1987) Identification of disulfide-bridged structures within human von Willebrand factor. Biochemistry 26: 8099–8109

    Article  PubMed  CAS  Google Scholar 

  • Neurath H (1986) Limited proteolysis, domains and the evolution of protein structure. Chemica scripta 27B: 221–229

    Google Scholar 

  • Novack JP, Charbonneau H, Blumenthal DK, Walsh KA, Beavo JA (1988) The domain structure of the calmodulin-dependent phosphodiesterase enzymes. In: Hidaka H (ed) Calcium binding proteins in health and disease. Plenum, New York, in press

    Google Scholar 

  • Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984) Guanosine cyclic 3′,5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23: 4207–4218

    Article  PubMed  CAS  Google Scholar 

  • Wakil SJ, Stopps JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52: 537–579

    Article  PubMed  CAS  Google Scholar 

  • Walsh KA (1987) The protein kinase family. In: Heilmeyer LMG (ed) Signal transduction and protein phosphorylation. Plenum, New York - London, p. 185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walsh, K.A., Charbonneau, H., Marti, T., Novack, J., Beavo, J.A. (1989). The Identification and Significance of Substructural Domains. In: Wittmann-Liebold, B. (eds) Methods in Protein Sequence Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73834-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73834-0_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73836-4

  • Online ISBN: 978-3-642-73834-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics