Skip to main content

Muscle

  • Chapter
Human Physiology

Abstract

It is only by contracting their muscles that people can interact with their environment. The movements so produced are required for the simplest manual tasks as well as to convey the most subtle thoughts and feelings — by speaking or writing, for instance, or by facial expression and gesture. These muscles constitute by far the most massive organ in the human body, accounting for 40–50% of its weight. Muscles are “machines” that contract by converting chemical energy directly into mechanical energy (work) and heat. The way the muscle machine operates — in particular, the mechanism of shortening and force development — can now be explained in considerable detail at the molecular level and on the basis of physical and chemical laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

Textbooks and Handbooks

  1. Hasselbach, W.: Muskel. In: Gauer, O.H., Kramer, K., Jung, R. (eds):Physiologie des Menschen. Vol. 4: Muskel. München-Berlin-Wien: Urban u. Schwarzenberg 1975

    Google Scholar 

  2. Peachey, L.D., Adrian, R.H. und Geiger S.R. (eds): Handbook of Physiology, Section 10: Skeletal Muscle, American Physiol. Soc. Bethesda 1983

    Google Scholar 

  3. Rüegg, J.C. Calcium in Muscle Activation. Berlin-Heidelberg-New York: Springer 1986. Corrected, second printing 1988

    Google Scholar 

  4. Wilkie, D.R.: Muscle. Second edition, London: Edward Arnold Limited, 1976

    Google Scholar 

Original Papers and Reviews

  1. Blinks, J.R., Rüdel, R., Taylor, S.R.: Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin. J. Physiol. 277, 291–323 (1978)

    PubMed  CAS  Google Scholar 

  2. BüLBRING, E., Brading, A.F., Jones, A.W., Tomita, T.: Smooth Muscle, London: Edward Arnold 1970

    Google Scholar 

  3. Golenhofen, K.: Die myogene Basis der glattmuskulären Motorik. Klin. Wschr. 56, 211–244 (1978)

    Article  PubMed  CAS  Google Scholar 

  4. Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (Lond.) 184, 170 (1966)

    CAS  Google Scholar 

  5. Hasselbach, W., Makinose, J.: Über den Mechanismus des Calciumtransports durch die Membranen des sarkoplasmatischen Reticulums. Biochem. Z. 339, 94 (1963)

    PubMed  CAS  Google Scholar 

  6. Huxley, A.F., Taylor, R.E.: Local activation of striated muscle fibres. J. Physiol. (Lond.) 144, 426 (1958)

    CAS  Google Scholar 

  7. Huxley, A.F.: Muscular contraction. J. Physiol. 243, 1–43 (1974)

    PubMed  CAS  Google Scholar 

  8. Huxley, H.E., Hanson, J.: Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation. Nature 173, 973 (1954)

    Article  PubMed  CAS  Google Scholar 

  9. Huxley, H.E.: The mechanism of muscular contraction. Science 164, 1356 (1969)

    Article  PubMed  CAS  Google Scholar 

  10. Huxley, H.E.: Structural changes in the actin and myosin containing filaments during contraction. Cold Spr. Harb. Symp. Quant. Biol. 37, 361 (1973)

    Article  CAS  Google Scholar 

  11. Huxley, H.E., Simmons, R.M., Faruki, A.R., Kress, M., Bordas, J., Koch, M.H.J.: Msec time resolved change in X-ray reflections from contracting muscle during rapid mechanical transients, recorded using synchrotron radiation. Proc. Natl. Acad. Sci., USA 78, 2297 (1981)

    Article  PubMed  CAS  Google Scholar 

  12. Infante, A.A., Davies, R.E.: Adenosintriphosphate breakdown during a single isotonic twitch of frog sartorious muscle. Biochem. Biophys. Res. Commun. 9, 410 (1962)

    Article  PubMed  CAS  Google Scholar 

  13. Jewell, B.R., Wilkie, D.R.: The mechanical properties of relaxing muscle. J. Physiol. (Lond.) 152: 30–47, 1960

    PubMed  CAS  Google Scholar 

  14. Mannherz, H.G. Schirmer, R.H.: Die Molekularbiologie der Bewegung. Chemie in unserer Zeit 6, 165–202 (1970)

    Article  Google Scholar 

  15. Rüegg, J.C.: Smooth muscle tone. Physiol. Rev. 51, 201 (1971)

    PubMed  Google Scholar 

  16. Weber, H.H., Portzehl, H.: The transference of the muscle energy in the contraction cycle. Progr. Biophys. Mol. Biol. 4, 61 (1954)

    Google Scholar 

  17. Wilkie, D.R.: The relation between force and velocity in human muscle. J. Physiol. 110, 249–280 (1950)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rüegg, J.C. (1989). Muscle. In: Schmidt, R.F., Thews, G. (eds) Human Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73831-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73831-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73833-3

  • Online ISBN: 978-3-642-73831-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics