Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 3))

Abstract

Within a number of endocrine structures including the gonads, the adrenals, and the placenta, cholesterol is transformed into several compounds that are generally referred to as steroids. Steroids are compounds which have a molecular weight of about 300 and share with cholesterol the cyclopentano-phenanthrene nucleus (three C6 and one C5 ring; see Fig. 1). Steroid synthesis consists of a series of oxidoreductions and decarboxylations of the cholesterol molecule. Three major classes of steroids implicated in the control of social behavior can be recognized based on the number of carbon atoms they contain: progestins (21 carbons), androgens (19 carbons), and estrogens (18 carbons; see Fig. 1 for a schematic drawing of the major types of steroid hormones).

Basic structure of the steroid molecule with the numbering system for carbons and structure of three important examples of the major classes of steroids implicated in the control of social behavior, namely androgens (testosterone), estrogens (estradiol), and progestagens (progesterone)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins EK (1975) Hormonal basis of sexual differentiation in the Japanese quail. J Comp Physiol Psychol 89:61–71

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK (1976) Embryonic exposure to an antiestrogen masculinizes behavior of female quail. Physiol Behav 17:357–359

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK (1977) Effects of diverse androgens on the sexual behavior and morphology of castrated male quail. Horm Behav 8:201–207

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK (1979) Effect of embryonic treatment with estradiol or testosterone on sexual differentiation of the quail brain. Neuroendocrinology 29:178–185

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK, Adler NT (1972) Hormonal control of behavior in the Japanese quail. J Comp Physiol Psychol 81:27–36

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK, Nock BL (1976) The effects of the antiestrogen CI-628 on sexual behavior activated by androgen or estrogen in quail. Horm Behav 7:417–429

    Article  PubMed  CAS  Google Scholar 

  • Adkins EK, Pniewski EE (1978) Control of reproductive behavior by sex steroids in male quail. J Comp Physiol Psychol 92:1169–1178

    Article  CAS  Google Scholar 

  • Adkins EK, Schlesinger L (1980) Androgens and the social behavior of male and female lizards (Anolis carolinensis). Horm Behav 13:139–152

    Article  Google Scholar 

  • Adkins EK, Boop JJ, Koutnik DL, Morris JB, Pniewski EE (1980) Further evidence that androgen aromatization is essential for the activation of copulation in male quail. Physiol Behav 24:441

    Article  PubMed  CAS  Google Scholar 

  • Adkins-Regan EK (1981a) Hormone specificity, androgen metabolism and social behavior. Am Zool 21:257–271

    CAS  Google Scholar 

  • Adkins-Regan EK (1981 b) Effect of sex steroids on the reproductive behavior of castrated male ring doves (Streptopelia sp.). Physiol Behav 26:561–565

    Article  PubMed  CAS  Google Scholar 

  • Adkins-Regan EK (1983) Sex steroids and the differentiation and activation of avian reproductive behaviour. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 218–228

    Chapter  Google Scholar 

  • Adkins-Regan EK, Garcia M (1986) Effect of flutamide (an antiandrogen) and diethylstilbestrol on the reproductive behavior of Japanese quail. Physiol Behav 36:419–425

    Article  PubMed  CAS  Google Scholar 

  • Adkins-Regan EK, Pickett P, Koutnik D (1982) Sexual differentiation in quail: conversion of androgen to estrogen mediates testosterone-induced demasculinization of copulation but not other male characteristics. Horm Behav 16:259–278

    Article  PubMed  CAS  Google Scholar 

  • Agmo A, Södersten P (1975) Sexual behavior in castrated rabbits treated with testosterone, oestradiol, DHT or oestradiol in combination with DHT. J Endocrinol 67:327–332

    Article  PubMed  CAS  Google Scholar 

  • Akhtar M, Skinner SJM (1968) The intermediary role of 19-oxoandrogen in the biosynthesis of estrogen. Biochem J 109:318–321

    PubMed  CAS  Google Scholar 

  • Alexandre C, Balthazart J (1986) Effects of metabolism inhibitors, antiestrogens and antiandrogens on the androgen and estrogen induced sexual behavior in Japanese quail. Physiol Behav 38:581–591

    Article  PubMed  CAS  Google Scholar 

  • Alexandre C, Balthazart J (1987) Inhibition of testosterone metabolism in the brain and cloacal gland of the quail by specific inhibitors and antihormones. J Endocrinol 112:189–195

    Article  PubMed  CAS  Google Scholar 

  • Alsum P, Goy RW (1974) Actions of esters of T, DHT and estradiol on sexual behavior in castrated male guinea pigs. Horm Behav 5:207–218

    Article  PubMed  CAS  Google Scholar 

  • Andrew RJ (1975) Effects of testosterone on the behaviour of the domestic chick. Effects present in males but not in females. Anim Behav 23:139–155

    Article  PubMed  CAS  Google Scholar 

  • Arnold AP (1980) Effects of androgens on volumes of sexually dimorphic brain regions in the zebra finch. Brain Res 185:441–444

    Article  PubMed  CAS  Google Scholar 

  • Balander RB, Van Krey HP, Siegel PB (1977) Aromatization of androgenic steroids in the domestic fowl. Poult Sci 56:1695–1696

    Google Scholar 

  • Balthazart J (1983) Hormonal correlates of behavior. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 7. Academic Press, London New York, pp 221–365

    Google Scholar 

  • Balthazart J, Hirschberg D (1979) Testosterone metabolism and sexual behavior in the chick. Horm Behav 12:253–263

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Hirschberg D (1982) Effects of several androgens on testosterone metabolism in the brain and crest of male chicks. IRCS Med. Sci 10:377–378

    CAS  Google Scholar 

  • Balthazart J, Ottinger MA (1984) 5β-Reductase activity in the brain and clocal gland of male and female embroys in the Japanese quail (Coturnix coturnix japonica). J Endocrinol 102:77–81

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M (1983) Testosterone metabolism and sexual differentiation in quail. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 237–260

    Chapter  Google Scholar 

  • Balthazart J, Schumacher M (1984) Changes in testosterone metabolism by the brain and cloacal gland during sexual maturation in the Japanese quail (Coturnix coturnix japonica). J Endocrinol 100:13–18

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M (1985) Role of testosterone metabolism in the activation of sexual behavior in birds. In: Gilles R, Balthazart J (eds) Neurobiology. Springer, Berlin Heidelberg New York Tokyo, pp 121–140

    Google Scholar 

  • Balthazart J, Massa R, Negri-Cesi P (1979) Photoperiodic control of testosterone metabolism, plasma gonadotropins, cloacal gland growth and reproductive behaviour in the Japanese quail. Gen Comp Endocrinol 39:222–235

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Bottom L, Massa R (1980) Effects of sex steroids on testosterone metabolism, plasma gonadotropins, cloacal gland growth and reproductive behaviour in the Japanese quail. Boll Zol 47:185–192

    Article  Google Scholar 

  • Balthazart J, Malacarne G, Deviche P (1981) Stimulatory effects of 5β-dihydrotestosterone on the sexual behavior in domestic chicks. Horm Behav 15:246–258

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Marcelle C, Sanna P, Schumacher M (1982) Inhibition of 5-beta-reductase activity in the quail brain by several steroid compounds. IRCS Med Sci 10:267–268

    CAS  Google Scholar 

  • Balthazart J, Schumacher M, Ottinger MA (1983) Sexual differences in the Japanese quail: behavior, morphology and intracellular metabolism of testosterone. Gen Comp Endocrinol 51: 191–207

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Turek R, Ottinger MA (1984 a) Altered brain metabolism of testosterone is correlated with reproductive decline in aging quail. Horm Behav 18:330–345

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M, Malacarne G (1984b) Relative potencies of testosterone and 5α-di-hydrotestosterone on crowing and cloacal gland growth in the Japanese quail (Coturnix coturnix japonica). J Endocrinol 100:19–23

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M, Malacarne G (1985) Interaction of androgens and estrogens in the control of sexual behavior in male Japanese quail. Physiol Behav 35:157–166

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Schumacher M, Pröve E (1986a) Brain testosterone metabolism during ontogeny in the zebra finch. Brain Res 378:240–250

    Article  PubMed  CAS  Google Scholar 

  • Balthazart J, Devos F, Dohet A, Foidart A, Hugla JL, Radermaker F, Schumacher M (1986b) The induction of aromatase and sexual behaviour by testosterone in male and female Japanese quail: a dose-response study. IRCS Med Sci 14:1188–1189

    Google Scholar 

  • Baum MJ (1979) A comparison of the effects of methyltrienolone (R1881) and 5α-dihydro-testosterone on sexual behaviour of castrated male rats. Horm Behav 13:165–174

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ, Vreeburg JTM (1973) Copulation in castrated male rats following combined treatment with estradiol and DHT. Science 182:283–285

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ, Vreeburg JTM (1976) Differential effects of the anti-estrogen MER-25 and three 5α reduced androgens on mounting and lordosis behavior in the rat. Horm Behav 7:87–104

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ, Tobet SA, Starr MS, Bradshaw WG (1982) Implantation of dihydrotestosterone propionate into the lateral septum or medial amygdala facilitates copulation in castrated male rats given estradiol systemically. Horm Behav 16:208–223

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ, Erskine MS, Stockman ER, Lundell LA (1985) Endocrine control of sexual differentiation in the male ferret. In: Gilles R, Balthazart J (eds) Neurobiology: current comparative approaches. Springer, Berlin Heidelberg New York Tokyo, pp 142–148

    Google Scholar 

  • Baum MJ, Kingsbury PA, Erskine MS (1987) Failure of the synthetic androgen 17β-hydroxy-17α-methyl-estra-4,9,11-triene-3-one (methyltrienolone, R1881) to duplicate the activational effect of testosterone on mating in castrated male rats. J Endocrinol 113:15–20

    Article  PubMed  CAS  Google Scholar 

  • Beach FA (1942) Copulatory behavior in prepuberally castrated male rats and its modification by estrogen administration. Endocrinology 31:679–683

    Article  Google Scholar 

  • Beatty WW (1979) Gonadal hormones and sex differences in non-reproductive behaviors in rodents: organizational and activational influences. Horm Behav 12:112–163

    Article  PubMed  CAS  Google Scholar 

  • Beatty WW (1984) Hormonal organization of sex differences in play fighting and spatial behavior. Rec Prog Horm Res 61:315–330

    CAS  Google Scholar 

  • Beyer C, Morali G, Cruz ML (1971) Effect of 5α-dihydrotestosterone on gonadotropin secretion and estrous behavior in the female wistar rat. Endocrinology 89:1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Beyer C, Larson K, Perez-Palacios G, Morali G (1973) Androgen structure and male sexual behavior in the castrated rat. Horm Behav 4:99–108

    Article  CAS  Google Scholar 

  • Beyer C, de la Torre L, Larsson K, Perez-Palacios G (1975) Synergistic actions of estrogen and androgen on the sexual behavior of the castrated male rabbit. Horm Behav 6:301–306

    Article  PubMed  CAS  Google Scholar 

  • Beyer C, Morali G, Naftolin F, Larsson K, Perez-Palacios G (1976) Effect of some antiestrogens and aromatase inhibitors on androgen-induced sexual behavior in castrated male rats. Horm Behav 7:353–363

    Article  PubMed  CAS  Google Scholar 

  • Bonne C, Raynaud JP (1976 a) Methyltrienolone, a specific ligand for cellular androgen receptors. Steroids 26:227–232

    Article  Google Scholar 

  • Bonne C, Raynaud JP (1976 b) Assay of androgen binding sites by exchange with methyltrienolone (R1881). Steroids 27:449–507

    Article  Google Scholar 

  • Bonneau M, Ahdieh HB, Thornton JE, Feder HH (1987) Cytosol androgen receptors in guinea pig brain and pituitary. Brain Res 413:104–110

    Article  PubMed  CAS  Google Scholar 

  • Booth JE (1977) Sexual behavior of neonatally castrated rats injected during infancy with oestrogen and dihydrotestosterone. J Endocrinol 72:135–141

    Article  PubMed  CAS  Google Scholar 

  • Bottom L, Massa R (1981) Seasonal changes in testosterone metabolism in the pituitary gland and central nervous system of the European starling (Stumus vulgaris). Gen Comp Endocrinol 43:532–536

    Article  Google Scholar 

  • Brain PF, Haug M, Kamis A (1983) Hormones and different tests for aggression with particular reference to the effects of testosterone metabolites. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 290–304

    Chapter  Google Scholar 

  • Callard GV (1981) Aromatization is cyclic AMP-dependent in cultured brain cells. Brain Res 204:461–464

    Article  PubMed  CAS  Google Scholar 

  • Callard GV (1984) Aromatization in brain and pituitary: an evolutionary perspective. In: Celotti F, Naftolin F, Martini L (eds) Metabolism of hormonal steroids in the neuroendocrine structures. Raven, New York, pp 79–102

    Google Scholar 

  • Callard GV, Petro Z, Ryan KJ (1978 a) Conversion of androgen to estrogen and other steroids in the vertebrate brain. Am Zool 18:511–523

    CAS  Google Scholar 

  • Callard GV, Petro Z, Ryan KJ (1978 b) Phylogenetic distribution of aromatase and other androgen-converting enzymes in the central nervous system. Endocrinology 103:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Callard GV, Hoffman RA, Petro Z, Ryan KJ (1979) In vitro aromatization and other androgen transformations in the brain of the hamster (Mesocricetus auratus). Biol Reprod 21:33–38

    Article  PubMed  CAS  Google Scholar 

  • Callard GV, Petro Z, Ryan KJ (1980) Aromatization of androgen to estrogen by cultures turtle brain cells. Brain Res 202:111–130

    Google Scholar 

  • Callard GV, Kunz TH, Petro Z (1983) Identification of androgen metabolic pathways in the brain of little brown bats (Myotis lucifugus): sex and seasonal differences. Biol Reprod 21:33–38

    Article  Google Scholar 

  • Callard GV, Mak P, Solomon DJ (1986) Effects of short days on aromatization and accumulation of nuclear estrogen receptors in the hamster brain. Biol Reprod 35:282–291

    Article  PubMed  CAS  Google Scholar 

  • Campbell CS, Finkelstein JS, Turek FW (1978) The interaction of photoperiod and testosterone on the development of copulatory behavior in castrated male hamsters. Physiol Behav 21:409–414

    Article  PubMed  CAS  Google Scholar 

  • Cardinali DP, Ritta MN, Gejman PV (1982) Norepinephrine stimulates testosterone aromatization and inhibits 5α-reduction via β-adrenoreceptors in rat pineal gland. Mol Cell Endocrinol 28:199–209

    Article  PubMed  CAS  Google Scholar 

  • Celotti F, Massa R, Martini L (1979) Metabolism of sex steroids in the central nervous system. In: Groot LJ (ed) Endocrinology. Grune and Stratton, New York, pp 41–53

    Google Scholar 

  • Celotti F, Naftolin F, Martini L (1984) Metabolism of hormonal steroids in the neuroendocrine structures. Serono Symp Publ Raven Press. Raven Press, New York, p 199

    Google Scholar 

  • Cheng MF (1979) Progress and prospect in ring dove research: a personal view. In: Rosenblatt JS, Hinde RA, Beer CG, Busnel MC (eds) Advances in the study of behavior. Academic Press, London New York, pp 97–129

    Google Scholar 

  • Cheng MF, Lehrman DS (1975) Gonadal hormone specificity in the sexual behavior of ring doves. Psychoneuroendocrinology 1:95–102

    Article  CAS  Google Scholar 

  • Christensen LW, Clemens LG (1974) Intrahypothalamic implants of testosterone or estradiol and resumption of masculine sexual behavior in long term castrated male rats. Endocrinology 95:984–990

    Article  PubMed  CAS  Google Scholar 

  • Christensen LW, Clemens LG (1975) Blockade of testosterone-induced mounting behavior in the male rat with intracranial application of the aromatization inhibitor, androst-l,4,6-triene-3,17-dione. Endocrinology 97:1545–1551

    Article  PubMed  CAS  Google Scholar 

  • Clemens LG, Pomerantz SM (1982) Testosterone acts as a prohormone to stimulate male copulatory behavior in male deer mice (Peromyscus maniculatus bairdi). J Comp Physiol Psychol 96: 114–122

    Article  PubMed  CAS  Google Scholar 

  • Cohen DH, MacDonald RL (1976) Involvement of the avian hypothalamus in defensively conditioned heart rate change. J Comp Neurol 167:465–480

    Article  PubMed  CAS  Google Scholar 

  • Crews D (1979) Endocrine control of reptilan reproductive behavior. In: Beyer C (ed) Endocrine control of sexual behavior. Plenum, New York London, pp 167–222

    Google Scholar 

  • Crews D, Gartska WR (1982) The ecological physiology of a garter snake. Sci Am 247: 158–168

    Article  Google Scholar 

  • Crews D, Traina V, Wetzel FT, Muller C (1978) Hormonal control of male reproductive behavior in the lizard, Anolis carolinensis: role of testosterone, dihydrotestosterone, and estradiol. Endocrinology 103:1814–1821

    Article  PubMed  CAS  Google Scholar 

  • Crews D, Camazine B, Diamond M, Mason R, Tokarz R, Gartska WR (1984) Hormonal independence of courtship behavior in the male garter snake. Horm Behav 18:29–41

    Article  PubMed  CAS  Google Scholar 

  • Daniel SAJ, Armstrong DT (1980) Enhancement of follicle-stimulating hormone-induced aromatase activity by androgens in cultured rat granulosa cells. Endocrinology 107:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • David R, Eckstein B (1976) Androstanediol sulphates in peripheral blood of immature rats and some of their biological effects. J Endocrinol 71:299–304

    Article  Google Scholar 

  • Davidson JM (1969) Effects of estrogen on the sexual behavior of male rats. Endocrinology 84:1365–1732

    Article  PubMed  CAS  Google Scholar 

  • Davies DT, Massa R, James R (1980) Role of testosterone and of its metabolites in regulating gonadotrophin secretion in the Japanese quail. J Endocrinol 84:211–222

    Article  PubMed  CAS  Google Scholar 

  • Davis PG, Barfield RJ (1979) Activation of masculine sexual behavior by intracranial estradiol benzoate implants in male rats. Neuroendocrinology 28:217–227

    Article  PubMed  CAS  Google Scholar 

  • Degtiar VG, Loseva LA, Isatchenkov BA (1981) In vitro metabolism of androgens in the hypothalamus and pituitary from infantile and adolescent rats of both sexes. Endocrinol Exp 15:181–190

    PubMed  CAS  Google Scholar 

  • Delville Y, Hendrick JC, Sulon J, Balthazart J (1984) Testosterone metabolism and testosterone-dependent characteristics in Japanese quail. Physiol Behav 33:817–823

    Article  PubMed  CAS  Google Scholar 

  • Denef C (1979) Evidence that pituitary 5α-dihydrotestosterone formation is regulated through changes in the proportional number and size of the gonadotropic cell. Neuroendocrinology 29:132–139

    Article  PubMed  CAS  Google Scholar 

  • Denef C, Magnus C, McEwen BS (1973) Sex differences and hormonal control of testosterone metabolism in rat pituitary and brain. J Endocrinol 59:605–621

    Article  PubMed  CAS  Google Scholar 

  • Denef C, Magnus C, McEwen BS (1974) Sex-dependent changes in pituitary 5α-dihydrotestosterone and 3α-androstanediol formation during postnatal development and puberty in the rat. Endocrinology 94:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Dessi-Fulgheri F, Lupo di Prisco C (1982) Odour of male and female rats changes hypothalamic aromatase and 5α-reductase activity and plasma sex steroid levels in unisexually reared male rats. Physiol Behav 28:231–235

    Article  PubMed  CAS  Google Scholar 

  • Dessi-Fulgheri F, Lupo di Prisco C, Verdarelli P (1975) Influence of long-term isolation on the production and metabolism of gonadal steroids in male and female rats. Physiol Behav 14: 495–499

    Article  Google Scholar 

  • Dessi-Fulgheri F, Lucarini N, Lupo di Prisco C (1976) Relationships between testosterone metabolism in the brain, other endocrine variables and intermale aggression in mice. Aggres Behav 2:223–231

    Article  Google Scholar 

  • Dessi-Fulgheri F, Dahlof LG, Larsson K, Lupo di Prisco C, Tozzi S (1980) Anosmia differentially affects the reproductive hormonal pattern in sexually experienced and inexperienced male rats. Physiol Behav 24:607–611

    Article  PubMed  CAS  Google Scholar 

  • Dessi-Fulgheri F, Lupo C, Dahlof LG, Musi B, Larsson K (1983 a) Effect of castration on hypothalamic testosterone metabolism in the male rat. Horm Res 18:206–209

    Article  PubMed  CAS  Google Scholar 

  • Dessi-Fulgheri F, Lupo C, Ciampi GM, Canonaco M, Larsson K (1983 b) Exposure to odour during development and hypothalamic metabolism of testosterone. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 305–312

    Chapter  Google Scholar 

  • Deviche P, Schumacher M (1982) Behavioural and morphological dose-responses to testosterone and 5α-dihydrotestosterone in the castrated male Japanese quail. Behav Proc 7:107–121

    Article  CAS  Google Scholar 

  • Deviche P, Bottoni L, Balthazart J (1982) 5β-Dihydrotestosterone is weakly androgenic in the adult Japanese quail (Coturnix coturnix japonica). Gen Comp Endocrinol 48:421–424

    Article  PubMed  CAS  Google Scholar 

  • Deviche P, Delville Y, Balthazart J (1987) Central and peripheral metabolism of 5α-dihydro-testosterone in the male Japanese quail: biochemical characterization and relationship with reproductive behavior. Brain Res 421:105–116

    Article  PubMed  CAS  Google Scholar 

  • DeVoogd TJ (1984) The avian song system: relating sex differences in behavior to dimorphism in the central nervous system. Prog Brain Res 61:171–184

    Article  PubMed  CAS  Google Scholar 

  • DeVoogd TJ, Nottebohm F (1981a) Gonadal hormones induce dendritic growth in the adult avian brain. Science 214:202–204

    Article  PubMed  CAS  Google Scholar 

  • DeVoogd TJ, Nottebohm F (1981b) Sex differences in dendritic morphology of a song control nucleus in the canary: a quantitative Golgi study. J Comp Neurol 196:309–316

    Article  PubMed  CAS  Google Scholar 

  • De Vries GJ (1985) The sexually dimorphic vasopressin innervation of the rat brain. Thesis, Amsterdam

    Google Scholar 

  • Doering CH, Gladue BA (1982) 5α-Androstane-3β,17β-diol binds to androgen and estrogen receptors without activating copulatory behavior in female rats. Pharmacol Biochem Behav 16:837–840

    Article  PubMed  CAS  Google Scholar 

  • Doering CH, Leyra PT (1984 a) Methyltrienolone (R1881) is not aromatized by placental microsomes or rat hypothalamic homogenates. J Steroid Biochem 20:1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Doering CH, Leyra PT (1984b) Lack or aromatization of methyltrienolone (R1881). In: Celotti F, Naftolin F, Martini L (eds) Metabolism of hormonal steroids in the neuroendocrine structures. Raven, New York, pp 139–148

    Google Scholar 

  • Dudley SD, Salisbury RS, Adkins-Regan EK, Weisz J (1984) Coursthip stimulates aromatase activity in preoptic area of brain in male ring doves. Endocrinology 115:1224–1226

    Article  PubMed  CAS  Google Scholar 

  • Eckstein B (1975) Studies on the onset of puberty in the female rat. J Steroid Biochem 6:873–878

    Article  PubMed  CAS  Google Scholar 

  • Edwards DA, Bürge KG (1971) Estrogenic arousal of aggressive and masculine sexual behavior in male and female mice. Horm Behav 2:239–245

    Article  CAS  Google Scholar 

  • Feder HH (1971) The comparative actions of testosterone propionate and 5α-androstan-17β-ol-3-one propionate on the reproductive behaviour, physiology and morphology of male rats. J Endocrinol 51:241–252

    Article  PubMed  CAS  Google Scholar 

  • Feder HH (1978) Specificity of steroid hormone activation of sexual behaviour in rodents. In: Hutchison JB (ed) Biological determinants of sexual behaviour. Wiley, New York, pp 395–424

    Google Scholar 

  • Feder HH (1981) Essentials of steroid structure, nomenclature, reactions, biosynthesis, and measurements. In: Adler NT (ed) Neuroendocrinology of reproduction, physiology and behavior. Plenum, New York London, pp 19–63

    Google Scholar 

  • Feder HH, Naftolin F, Ryan KJ (1974) Male and female sexual responses in male rats given estradiol benzoate and 5-α-androstan-17β-ol-3-one propionate. Endocrinology 94:136–141

    Article  PubMed  CAS  Google Scholar 

  • Feder HH, Storey A, Goodwin D, Reboulleau C (1977) Testosterone and “5α-dihydrotestosterone” levels in peripheral plasma of male and female ring doves (Streptopelia risoria) during the reproductive cycle. Biol Reprod 16:666–677

    Article  PubMed  CAS  Google Scholar 

  • Feder HH, Landau IT, Walker WE (1979) Anatomical and biochemical substrates of the actions of estrogens and antiestrogens on brain tissues that regulate female sex behavior in rodents. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, pp 317–340

    Google Scholar 

  • Finney HC, Erpino MJ (1976) Synergistic effect of estradiol benzoate and dihydrotestosterone on aggression in mice. Horm Behav 7:391–400

    Article  PubMed  CAS  Google Scholar 

  • Folkerd EJ, James VHT (1983) Aromatization of steroids in peripheral tissues. J Steroid Biochem 19:687–690

    Article  PubMed  CAS  Google Scholar 

  • Fortune JE, Vincent SE (1983) Progesterone inhibits the induction of aromatase activity in rat granulosa cells in vitro. Biol Reprod 28:1078–1089

    Article  PubMed  CAS  Google Scholar 

  • Garavini C, Cristofori M (1984) The effect of 5a-dihydrotestosterone and 5β-dihydrotestosterone on erythropoiesis of the newt, Trituras cristatus carnifex (Laur). Gen Comp Endocrinol 54:188–193

    Article  PubMed  CAS  Google Scholar 

  • George FW, Ojeda SR (1982) Changes in aromatase activity in the rat brain during embryonic, neonatal and infantile development. Endocrinology 111:522–529

    Article  PubMed  CAS  Google Scholar 

  • George FW, Ojeda SR (1987) Vasoactive intestinal peptide enhances aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone. Proc Natl Acad Sci USA 84:5803–5807

    Article  PubMed  CAS  Google Scholar 

  • George FW, Tobleman WT, Milewich L, Wilson JD (1978) Aromatase activity in the developing rabbit brain. Endocrinology 102:86–91

    Article  PubMed  CAS  Google Scholar 

  • Ghraf R, Deutsch HJ, Lax ER, Schriefers H (1979 a) The action of estrogens on the androgen-depen-dent microsomal activity of 3α-hydroxysteroid dehydrogenase in male rat kidney. J Steroid Biochem 11:1259–1264

    Article  PubMed  CAS  Google Scholar 

  • Ghraf R, Deutsch HJ, Lax ER, Schriefers H (1979 b) Androgen-priming of the hyperinductive estrogen effect on the cytoplasmic activity of 3α-hydroxysteroid dehydrogenase in rat kidney. J Steroid Biochem 11:1265–1269

    Article  PubMed  CAS  Google Scholar 

  • Ghraf R, Schneider K, Kirschhoff J, Hiemke C (1982 a) Subcellular localization of 3α-hydroxysteroid dehydrogenase and antiestrogen action on androgen-metabolizing enzymes in rat pituitary gland. J Neurochem 38:876–882

    Article  PubMed  CAS  Google Scholar 

  • Ghraf R, Schneider K, Kirschhoff J, Hiemke C (1982b) The action of 5α-dihydrotestosterone and antiandrogens on the activities of 5α-reductase and 3α-hydroxysteroid dehydrogenase in the pituitary gland of gonadectomized rats. J Steroid Biochem 16:545–552

    Article  PubMed  CAS  Google Scholar 

  • Giacomini M, Wright F (1980) The effects of progesterone and preganedione on the reductive metabolism of dihydrotestosterone in human skin. J Steroid Biochem 13:545–651

    Article  Google Scholar 

  • Gladue BA, Clemens LG (1980) Flutamide inhibits testosterone-induced masculine sexual behavior in male and female rats. Endocrinology 106:1917–1922

    Article  PubMed  CAS  Google Scholar 

  • Goldfoot DA (1979) Sex-specific, behavior-specific actions of dihydrotestosterone: activation of aggression, but not mounting in ovariectomized guinea pigs. Horm Behav 13:241–255

    Article  PubMed  CAS  Google Scholar 

  • Guhl AM (1949) Heterosexual dominance and mating behavior in chicken. Behaviour 2:106–120

    Article  Google Scholar 

  • Gurney ME (1981) Hormonal control of cell form and number in the zebra finch song system. J Neurosci 1:658–673

    PubMed  CAS  Google Scholar 

  • Gurney ME (1982) Behavioral correlates of sexual differentiation in the zebra finch song system. Brain Res 231:153–172

    Article  PubMed  CAS  Google Scholar 

  • Gurney ME, Konishi M (1980) Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science 208:1380–1383

    Article  PubMed  CAS  Google Scholar 

  • Harding CF, Sheridan K, Walters M J (1983) Hormonal specificity and activation of sexual behavior in male zebra finches. Horm Behav 17:111–133

    Article  PubMed  CAS  Google Scholar 

  • Harding CF, Walters MJ, Parsons B (1984) Androgen receptor levels in hypothalamic and vocal control nuclei in the male zebra finch. Brain Res 306:333–339

    Article  PubMed  CAS  Google Scholar 

  • Harding CF, Walters MJ, Collado D, Oliva-Purdy J (1985) The importance of estrogenic metabolites in activating behavior in the male zebra finch. Abstr Conf Reprod Behav, Asilomar, California

    Google Scholar 

  • Harris VS, Sachs BD (1975) Copulatory behavior in male rats following amygdaloid lesions. Brain Res 86:514–518

    Article  PubMed  CAS  Google Scholar 

  • Hart BL (1979) Sexual behavior and penile reflexes of neonatally castrated male rats treated in infancy with estrogen and dihydrotestosterone. Horm Behav 13:256–268

    Article  PubMed  CAS  Google Scholar 

  • Has B, Kniewald Z, Milkovic S (1975) Effect of coincubation of the pituitary and hypothalamus of intact and castrated male rats and influence of LH-RH on pituitary 5α-reductase activity. Neuro-endocrinology 19:36–43

    CAS  Google Scholar 

  • Hillier SG, De Zwart FA (1981) Evidence that granulosa cell aromatase induction/activation by follicle stimulating hormone is an androgen receptor-regulated process in vitro. Endocrinology 109: 1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Holzbauer M (1976) Physiological aspects of steroids with anaesthetic properties. Med Biol 54: 227–242

    PubMed  CAS  Google Scholar 

  • Hutchison JB (1970) Differential effects of testosterone and oestradiol on male courtship behavior in the Barbary dove (Streptopelia risoria). Anim Behav 18:41–51

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JB (1971) Effects of hypothalamic implants of gonadal steroids on courtship behaviour in Barbary doves (Streptopelia risoria). J Endocrinol 50:97–113

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JB, Hutchison RE (1985) Phasic effects of hormones in the avian brain during behavioural development. In: Gilles R, Balthazart J (eds) Neurobiology. Current comparative aspects. Springer, Berlin Heidelberg New York Tokyo, pp 105–120

    Google Scholar 

  • Hutchison JB, Schumacher M (1986) Development of testosterone metabolizing pathways in the avian brain: enzyme localization and characteristics. Dev Brain Res 25:33–42

    Article  CAS  Google Scholar 

  • Hutchison JB, Steimer TH (1981) Brain 5β-reductase: a correlate of behavioral sensitivity to androgen. Science 213:244–246

    Article  PubMed  CAS  Google Scholar 

  • Hutchison JB, Steimer TH (1983) Hormone-mediate behavioural transitions: a role for brain aromatase. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, pp 261–274

    Chapter  Google Scholar 

  • Hutchison JB, Steimer TH (1986) Formation of behaviorally effective 17β-estradiol in the dove brain: steroid control of preoptic aromatase. Endocrinology 118:2180–2187

    Article  PubMed  CAS  Google Scholar 

  • Hutchison RE (1978) Hormonal differentiation of sexual behavior in the Japanese quail. Horm Behav 11:363–387

    Article  PubMed  CAS  Google Scholar 

  • Irving RA, Mainwaring WIP, Spooner PM (1976) The regulation of haemoglobin synthesis in cultured chick blastoderms by steroids related to 5β-androstane. Biochem J 154:81–93

    PubMed  CAS  Google Scholar 

  • Jenkins JS, McCaffery VM (1974) Effect of oestradiol-17β and progesterone on the metabolism of testosterone by human prostatic tissue. J Endocrinol 63:517–526

    Article  PubMed  CAS  Google Scholar 

  • Johnston P, Davidson JM (1972) Intracerebral androgens and sexual behavior in the male rat. Horm Behav 3:345–357

    Article  CAS  Google Scholar 

  • Jouan P, Samperez S (1980) Metabolism of steroid hormones in the brain. In: Motta M (ed) The endocrine functions of the brain. Raven, New York, pp 95–115

    Google Scholar 

  • Kobayashi RM, Reed KC (1977) Conversion of androgens to estrogens (aromatization) in discrete regions of the rat brain: sexual differences and the effects of castration. Soc Neurosci Abstr 3:348

    Google Scholar 

  • Korbenbrot CC, Schomberg DW, Erickson CJ (1974) Radioimmunoassay of plasma estradiol during the breeding cycle of ring doves (Streptopeiia risoria). Endocrinology 94:1126–1132

    Article  Google Scholar 

  • Larsson K (1979) Features of the neuroendocrine regulation of masculine sexual behavior. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, pp 77–163

    Google Scholar 

  • Larsson K, Södersten P, Beyer C (1973) Sexual behavior in male rats treated with estrogen in combination with DHT. Horm Behav 4:289–299

    Article  CAS  Google Scholar 

  • Lea RW, Armstrong DG (1986) Changes in aromatase activity in the brain of the male ring dove (Streptopeiia risoria) during the breeding cycle. Comp Biochem Physiol 4:693–696

    Article  Google Scholar 

  • Lee DKH, Young JC, Tamura Y, Patterson DC, Bird CE, Clark AF (1973) In vitro effects of estrogens and the Δ4-reduction of testosterone by rat prostate and liver preparations. Can J Biochem 51:735–740

    Article  PubMed  CAS  Google Scholar 

  • Lehninger AL (1970) Biochemistry. Worth, New York

    Google Scholar 

  • Lehrman DS (1965) Interaction between the internal and external environments in the regulation of the reproductive cycle of ring doves. In: Beach FA (ed) Sex and behavior. Wiley, New York, pp 355–380

    Google Scholar 

  • Levere RD, Kappas A, Granick S (1967) Stimulation of hemoglobin synthesis in chick blastoderm by certain 5β-androstane and 5α-pregnane steroids. Proc Natl Acad Sci USA 58:985–990

    Article  PubMed  CAS  Google Scholar 

  • Lieberburg I, McEwen BS (1977) Brain cell nuclear retention of testosterone metabolites, 5α-dihydrotestosterone and estradiol-17β in adult rats. Endocrinology 100:588–597

    Article  PubMed  CAS  Google Scholar 

  • Lieberburg I, Nottebohm F (1979) High-affinity androgen binding proteins in syringeal tissues of songbirds. Gen Comp Endocrinol 37:286–293

    Article  PubMed  CAS  Google Scholar 

  • Lisciotto CA, Debold JF (1984) Androgenic and estrogenic control of sexual and aggressive behavior in male hamster. 1st Congr Comp Physiol Biochem, Liege, Belgium, Abstr D27

    Google Scholar 

  • Lovari S, Hutchison JB (1975) Behavioural transitions in the reproductive cycle of Barbary doves (Streptopeiia risoria). Behaviour 53:126–150

    Article  Google Scholar 

  • Lupo di Prisco C, Dessi-Fulgheri F (1975) Effect of long-term isolation on in vitro steroidogenesis by the brain of aged rat. Exp Brain Res Suppl 23:131

    Google Scholar 

  • Lupo di Prisco C, Lucarini N, Dessi-Fulgheri F (1978) Testosterone aromatization in rat brain is modulated by social environment. Physiol Behav 20:345–348

    Article  PubMed  CAS  Google Scholar 

  • Luttge WG (1972) Activation and inhibition of isolation induced intermale fighting behavior in castrated male CD-I mice treated with steroidal hormones. Horm Behav 3:71–81

    Article  PubMed  CAS  Google Scholar 

  • Luttge WG (1979) Endocrine control of mammalian male sexual behavior: an analysis of the potential role of testosterone metabolites. In: Beyer C (ed) Endocrine control of sexual behavior. Raven, New York, pp 341–363

    Google Scholar 

  • Luttge WG, Hall NR (1973) Differential effectiveness of T and its metabolites in the induction of male sexual behavior in two strains of albino mice. Horm Behav 4:31–43

    Article  CAS  Google Scholar 

  • Luttge WG, Hall NR, Wallis CJ (1974) Studies on the neuroendocrine, somatic and behavioral effectiveness of testosterone and its 5α-reduced metabolites in Swiss-Webster mice. Physiol Behav 13:553–561

    Article  CAS  Google Scholar 

  • Maley MJ (1969) Electrical stimulation of agonistic behavior in the mallard. Behaviour 34:138–160

    Article  Google Scholar 

  • Martin PM, Sheridan P (1982) Towards a new model for the mechanism of action of steroids. J Steroid Biochem 16:215–229

    Article  PubMed  CAS  Google Scholar 

  • Martini L (1982) The 5α-reduction of testosterone in the neuroendocrine structures. Biochemical and physiological implications. Endocr Rev 3:1–25

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Sharp PJ (1981) Conversion of testosterone to 5β-reduced metabolites in the neuroendocrine tissues of maturing cockerel. J Endocrinol 88:263–269

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Stupnicka E, Kniewald Z, Martini L (1972) The transformation of testosterone into dihydrotestosterone by the brain and the anterior pituitary. J Steroid Biochem 3:385–399

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Justo S, Martini L (1975) Conversion of testosterone into 5α-reduced metabolites in the anterior pituitary and in the brain of maturing rats. J Steroid Biochem 6:567–571

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Cresti L, Martini L (1977) Metabolism of testosterone in the anterior pituitary gland and the central nervous system of the European starling (Sturnus vulgaris). J Endocrinol 75: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Davies DT, Bottoni L, Martini L (1979) Photoperiodic control of testosterone metabolism in the central and peripheral structures of avian species. J Steroid Biochem 11:937–944

    Article  PubMed  CAS  Google Scholar 

  • Massa R, Davies DT, Bottoni L (1980) Cloacal gland of the Japanese quail: androgen dependence and metabolism of testosterone. J Endocrinol 84:223–230

    Article  PubMed  CAS  Google Scholar 

  • McDonald P, Beyer C, Newton F, Brien B, Baker R, Tan HS, Sampson C, Kitching P, Greenhill R, Pritchard D (1970) Failure of 5α-dihydrotestosterone to initiate sexual behavior in the castrated male rat. Nature (London) 277:964–965

    Article  Google Scholar 

  • Mills SH, Heath JE (1972) Anterior hypothalamic/preoptic lesions impair normal thermoregulation in house sparrows. Comp Biochem Physiol 43A:125–129

    Article  Google Scholar 

  • Mode A, Gustafsson JA, Södersten P, Eneroth P (1984) Sex differences in behavioural androgen sensitivity: possible role of androgen metabolism. J Endocrinol 100:245–248

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Suzuki K, Tamaoki BI (1974) Testosterone metabolism in rooster comb. Biochim Biophys Acta 337:118–128

    PubMed  CAS  Google Scholar 

  • Morali G, Larsson K, Beyer C (1977) Inhibition of testosterone-induced sexual behavior in the castrated male rat by aromatase blockers. Horm Behav 9:203–213

    Article  PubMed  CAS  Google Scholar 

  • Morin LP, Zucker I (1978) Photoperiodic regulation of copulatory behavior in the male hamster. J Endocrinol 77:249–258

    Article  PubMed  CAS  Google Scholar 

  • Naftolin F, Ryan KJ, Petro Z (1972) Aromatization of androstenedione by anterior hypothalamus of adult male and female rats. Endocrinology 90:295–298

    Article  PubMed  CAS  Google Scholar 

  • Naftolin F, Ryan KJ, Davies TJ, Reddy VV, Flores F, Petro Z, Kuhn M, White RJ, Takaoka Y, Wolin L (1975) The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res 3:295–319

    Google Scholar 

  • Nakamura T, Tanabe Y (1974) In vitro metabolism of steroid hormones by chicken brain. Acta Endocrinol 75:410–416

    PubMed  CAS  Google Scholar 

  • Nance DM, Shryne J, Gorski RA (1975) Effects of septal lesions on behavioral sensitivity of female rats to gonadal hormones. Horm Behav 6:59–64

    Article  PubMed  CAS  Google Scholar 

  • Noble R (1974) Estrogen plus androgen induced mounting in adult female hamster. Horm Behav 5:227–234

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F (1980) Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res 189:429–436

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the song-bird brain. Science 194:211–213

    Article  PubMed  CAS  Google Scholar 

  • Numan M (1983) Brain mechanisms of maternal behaviour in the rat. In: Balthazart J, Pröve E, Gilles R (eds) Hormones and behaviour in higher vertebrates. Springer, Berlin Heidelberg New York, PP 69–85

    Chapter  Google Scholar 

  • Nyby JG, Simon NG (1987) Nonaromatizable androgens may stimulate a male mouse reproductive behavior by binding to estrogen receptors. Physiol Behav 39:147–151

    Article  PubMed  CAS  Google Scholar 

  • Nyby JG, Thiessen DD (1971) Singular and interactive effects of testosterone and estrogen on territorial marking in castrated male Mongolian gerbils (Meriones unquiculatus). Horm Behav 2:279–285

    Article  CAS  Google Scholar 

  • O’Connell ME, Reboulleau C, Feder HH, Silver R (1981) Social interactions and androgen levels in birds. 1. Female characteristics associated with increased plasma androgen levels in the male ring dove (Streptopelia risoria). Gen Comp Endocrinol 44:454–464

    Article  Google Scholar 

  • Olsen KL (1985) Aromatization: is it critical for the differentiation of sexually dimorphic behaviours? In: Gilles R, Balthazart J (eds) Neurobiology: current comparative approaches. Springer, Berlin Heidelberg New York Tokyo, pp 149–164

    Google Scholar 

  • Osawa Y, Spaeth DG (1971) Estrogen biosynthesis. Stereospecific distribution of tritium in testosterone 1a, 2a-t2. Biochemistry 10:66–71

    Article  PubMed  CAS  Google Scholar 

  • Ottinger MA, Bakst MR (1981) Peripheral androgen concentrations and testicular morphology in embryonic and young male Japanese quail. Gen Comp Endocrinol 43:170–177

    Article  PubMed  CAS  Google Scholar 

  • Ottinger MA, Duchala CS, Masson M (1983) Age-related reproductive decline in the male Japanese quail. Horm Behav 17:197–207

    Article  PubMed  CAS  Google Scholar 

  • Owen K, Peters PJ, Bronson FH (1974) Effects of intercranial implants of testosterone propionate on intermale aggression in the castrated male mouse. Horm Behav 5:83–92

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–450

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Brownstein MJ (1983) Microdissection of brain areas by the punch technique: In: Cuello AC (ed) Brain microdissection techniques. Wiley, New York, pp 1–36

    Google Scholar 

  • Palmiter RD, Haines ME (1973) Regulation of protein synthesis in chick oviduct. J Biol Chem 248:2107–2116

    PubMed  CAS  Google Scholar 

  • Parrott RF (1974) Effect of 17β-hydroxy-4-androsten-19-ol-3-one (19-hydroxytestosterone) and 5α-androstan-17β-ol-3-one (dihydrotestosterone) on aspects of sexual behavior in castrated male rats. J Endocrinol 61:105–115

    Article  PubMed  CAS  Google Scholar 

  • Parrott RF (1975) Aromatizable and 5α-reduced androgens: differentiation between central and peripheral effects on male rat sexual behavior. Horm Behav 6:99–108

    Article  PubMed  CAS  Google Scholar 

  • Parrott RF (1986) Minimal effects of 17β-hydroxy-17α-methyl-estra-4,9,11-triene-3-one (R1881) on sexual behaviour in prepubertally castrated rams. J Endocrinol 110:481–487

    Article  PubMed  CAS  Google Scholar 

  • Paup DC, Mennin SP, Gorski RA (1975) Androgen- and estrogen-induced copulatory behavior and inhibition of luteinizing hormone (LH) in the male rat. Horm Behav 6:35–46

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G (1976) Interruption of septal connections: effects on drinking, irritability and copulation. Physiol Behav 17:81–88

    Article  PubMed  CAS  Google Scholar 

  • Pfaff DW (1970) Nature of sex hormone effects on rat sex behavior: specificity of effects and individual patterns of response. J Comp Physiol Psychol 73:349–358

    Article  PubMed  CAS  Google Scholar 

  • Phillips RE, Youngren OM (1971) Brain stimulation and species typical behaviour: activities evoked by electrical stimulation of the brains of chickens (Gallus gallus). Anim Behav 19:757–779

    Article  PubMed  CAS  Google Scholar 

  • Phoenix C (1974) Effects of DHT on sexual behavior of castrated rhesus monkeys. Physiol Behav 12:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Raynaud JP, Bouton MM, Moguilewsky M, Ojassoo T, Philibert D, Beck G, Labrie F, Mornon JP (1980) Steroid hormone receptors and pharmacology. J Steroid Biochem 12:143–157

    Article  PubMed  CAS  Google Scholar 

  • Reedy VVR, Naftolin F, Ryan KJ (1973) Aromatization in the centrol nervous system of rabbits: effects of castration and hormone treatment. Endocrinology 92:589–594

    Article  CAS  Google Scholar 

  • Reedy VVR, Naftolin F, Ryan KJ (1974) Conversion of androstenedione to estrone by neural tissues from fetal and neonatal rats. Endocrinology 94:117–121

    Article  Google Scholar 

  • Redd KC, Ohno S (1976) Kinetic properties of human placental aromatase. Endocrinology 94:117–121

    Article  Google Scholar 

  • Ricketts AP, Galil AKA, Ackland N, Heap RB, Flint APF (1980) Activation by corticosteroids of steroid metabolizing enzymes in ovine placental expiants in vitro. J Endocrinol 85:457–469

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE, Resko JA (1984) Androgens regulate brain aromatase activity in adult male rats through a receptor mechanism. Endocrinology 114:2183–2189

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE, Resko JA (1986) Effects of gonadectomy and androgen treatment on aromatase activity in the fetal monkey brain. Biol Reprod 35:106–112

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE, Ellinwood WE, Resko JA (1984) Regulation of brain aromatase activity in rats. Endocrinology 114:192–200

    Article  PubMed  CAS  Google Scholar 

  • Roselli CE, Horton LE, Resko JA (1985) Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system. Endocrinology 117:2471–2477

    Article  PubMed  CAS  Google Scholar 

  • Sachs BD (1967) Photoperiodic control of the cloacal gland of the Japanese quail. Science 157:201-’03

    Article  PubMed  CAS  Google Scholar 

  • Schleidt WM (1970) Precocial sexual behavior in turkeys (Meleagris gallopavo L.) Anim Behav 18:760–761

    Article  Google Scholar 

  • Schlinger B, Callard GV (1987) A comparison of aromatase, 5α-, and 5β-reductase activities in the brain and pituitary of male and female quail (C. c. japonica). J Exp Zool 242:171–180

    Article  PubMed  CAS  Google Scholar 

  • Schlinger B, Scanes C, Randhawa M, Callard G (1984) Distribution of aromatase acitivity in quail brain (C. c. japonica): effects of photoperiod and castration. J Steroid Biochem 20:1571

    Article  Google Scholar 

  • Schumacher M, Balthazart J (1983) The effects of testosterone and its metabolites on sexual behavior and morphology in male and female Japanese quail. Physiol Behav 30:335–339

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Balthazart J (1984 a) Sexual dimorphism and the hypothalamic metabolism of testosterone in male and female Japanese quail (Coturnix coturnix japonica). Prog Brain Res 61:53–61

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Balthazart J (1984 b) The postnatal demasculinization of sexual behavior in the Japanese quail (Coturnix coturnix japonica). Horm Behav 18:298–312

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Balthazart J (1986) Testosterone-induced brain aromatase is sexually dimorphic. Brain Res 370:285–293

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Balthazart J (1987) Neuroanatomical distribution of testosterone metabolizing enzymes in the Japanese quail. Brain Res 422:137–148

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, Hutchison JB (1986) Testosterone induces hypothalamic aromatase during early development in quail. Brain Res 377:63–72

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Contenti E, Balthazart J (1983) Testosterone metabolism in discrete areas of the hypothalamus and adjacent brain regions of male and female Japanese quail (Coturnix coturnix japonica). Brain Res 278:337–340

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Contenti E, Balthazart J (1984) Partial characterisation of testosterone metabolizing enzymes in the quail brain. Brain Res 305:51–59

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Alexandre C, Balthazart J (1987 a) Interactions of androgens and estrogens in the control of reproduction. C R Acad Sci Ser C 305:569–574

    CAS  Google Scholar 

  • Schumacher M, Legros JJ, Balthazart J (1987 b) Steroid hormones, behavior and sexual dimorphism in animals and men: the nature-nurture controversy. Clin Exp Endocrinol 90:129–156

    Article  CAS  Google Scholar 

  • Schumacher M, Hutchison RE, Hutchison JB (1988) Ontogeny of testosterone-inducible brain aromatase activity. Brain Res 441:98–110

    Article  PubMed  CAS  Google Scholar 

  • Schwarzel WC, Kruggel WG, Brodie HJ (1973) Studies on the mechanism of estrogen biosynthesis. VIII. The development of inhibitors of the enzyme system in human placenta. Endrocrinology 92:866–880

    Article  CAS  Google Scholar 

  • Selmanoff MK, Brodkin LD, Weiner RI, Siiteri PK (1977) Aromatization and 5α-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology 101:841–848

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Armstrong DG, Moss R (1986) Changes in aromatase activity in the neuroendocrine tissues of red grouse (Lagopus lagopus scoticus) in relation to the development of long-day refractoriness. J Endocrinol 108:129–135

    Article  PubMed  CAS  Google Scholar 

  • Sheridan PJ (1983) Androgen receptors in the brain: what are we measuring? Endocr Rev 4:171–178

    Article  PubMed  CAS  Google Scholar 

  • Sholl SA, Goy RW, Uno H (1982) Differences in brain uptake and metabolism of testosterone in gonadectomized, adrenalectomized male and female rhesus monkeys. Endocrinology 111:806–813

    Article  PubMed  CAS  Google Scholar 

  • Siiteri RK, Thompson EA (1975) Studies of human placental aromatase. J Steroid Biochem 6: 317–322

    Article  PubMed  CAS  Google Scholar 

  • Silver R, O’Connell M, Saad R (1979) Effects of androgens on the behavior of birds. In: Beyer C (ed) Endocrine control of sexual behavior. Plenum, New York London, pp 223–278

    Google Scholar 

  • Skinner SJM, Akhtar M (1969) The stereospecific removal of a C19 hydrogen atom in oestrogen biosynthesis. Biochem J 114:75–81

    PubMed  CAS  Google Scholar 

  • Södersten P (1973) Estrogen-activated sexual behavior in male rats. Horm Behav 4:247–256

    Article  Google Scholar 

  • Södersten P (1975) Mounting behavior and lordosis behavior in castrated male rats treated with testosterone propionate, or with estradiol benzoate or dihydrotestosterone in combination with testosterone propionate. Horm Behav 6:109–126

    Article  PubMed  Google Scholar 

  • Södersten P, Gustafsson J-A (1980 a) A way in which estradiol might play a role in the sexual behavior of male rats. Horm Behav 14:271–274

    Article  PubMed  Google Scholar 

  • Södersten P, Gustafsson J-A (1980 b) Activation of sexual behaviour in castrated rats with the synthetic androgen 17β-hydroxy-17α-methyl-estra-4,9,11-triene-3-one (R1881). J Endocrinol 87: 279–283

    Article  PubMed  Google Scholar 

  • Södersten P, Larsson K (1974) Lordosis behavior in castrated male rats treated with estradiol benzoate or testosterone propionate in combination with an estrogen antagonist, MER 25, and in intact male rats. Horm Behav 5:13–18

    Article  PubMed  Google Scholar 

  • Södersten P, Gray G, Damassa DA, Smith ER, Davidson JM (1975) Effects of a non-steroidal antiandrogen on sexual behavior and pituitary-gonadal function in the male rat. Endocrinology 97:1468–1475

    Article  PubMed  Google Scholar 

  • Södersten P, Eneroth P, Mode A, Gustafsson JA (1985) Mechanisms of androgen-activated sexual behaviour in rats. In: Gilles R, Balthazart J (eds) Neurobiology. Springer, Berlin Heidelberg New York Tokyo, pp 48–59

    Google Scholar 

  • Södersten P, Eneroth, Hansson, Mode A, Johansson D, Naslund B, Liang T, Gustafsson JA (1986) Activation of sexual behaviour in castrated rats: the role of oestradiol. J Endocrinol 111:455–462

    Article  PubMed  Google Scholar 

  • Steel E, Hutchison JB (1986) Olfactory recognition in the male hamster: effect of non-aromatizable androgens, 17β-hydroxy-17α-methyl-estra-4,9,11-triene-3-one (R1881) and 5α-dihydrotestosterone in combination with oestrogen. J Endocrinol 110:525–531

    Article  PubMed  CAS  Google Scholar 

  • Steimer TH, Hutchison JB (1980) Aromatization of testosterone within a discrete hypothalamic area associated with the behavioral action of androgen in the male dove. Brain Res 192:586–591

    Article  PubMed  CAS  Google Scholar 

  • Steimer TH, Hutchison JB (1981 a) Androgen increases formation of behaviourally effective oestrogen in dove brain. Nature (London) 292:345–347

    Article  CAS  Google Scholar 

  • Steimer TH, Hutchison JB (1981 b) Metabolic control of the behavioral action of androgens in the dove brain: testosterone inactivation by 5β-reduction. Brain Res 209:189–204

    Article  PubMed  CAS  Google Scholar 

  • Steimer TH, Hutchison JB (1983) Nuclear uptake of testosterone in the dove preoptic area. Brain Res 274:193–196

    Article  PubMed  CAS  Google Scholar 

  • Stumpf WE, Sar M (1978) Anatomical distribution of estrogen, androgen, progestin, corticosteroid and thyroid hormone target sites in the brain of mammals: phylogeny and ontogeny. Am Zool 18:435–445

    CAS  Google Scholar 

  • Tan SY, Antonipillai I, Pearson-Murphy BE (1974) Inhibition of testosterone metabolism in the human prostate. J Clin Endocrinol Metab 39:936–941

    Article  PubMed  CAS  Google Scholar 

  • Tenniswood M, Bird CE, Clark AF (1982) The role of androgen metabolism in the control of androgen action in the rat prostate. Mol Cell Endocrinol 27:89–96

    Article  PubMed  CAS  Google Scholar 

  • Thien NC, Duval J, Samperez S, Jouan P (1974) Testosterone 5α-reductase of microsomes from rat anterior hypophysis: properties, increase by castration and hormonal control. Biochimie 56:899–906

    Article  Google Scholar 

  • Thieuland ML, Samperez S, Jouan P (1981) Evidence of 5α-androstane-3β,17β-diol binding to the estrogen receptor in the cytosol from male rat pituitary. Endocrinology 108:1552–1560

    Article  Google Scholar 

  • Thieuland ML, Benie T, Jouan P (1982) Ontogeny of 5α-androstan-3β,17β-diol and 17β-estradiol binding to cytoplasm and nuclei of the male rat pituitary. Endocrinology 110:1300–1307

    Article  Google Scholar 

  • Thieuland ML, Benie T, Michaud S, Klein H, Vessieres A (1983) Binding and effects of 5α-andro- stane-3β,17β-diol in the male rat pituitary. J Steroid Biochem 19:241–246

    Article  Google Scholar 

  • Thompson EA, Siiteri PK (1974 a) Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J Biol Chem 249:5364–5372

    PubMed  CAS  Google Scholar 

  • Thompson EA, Siiteri PK (1974 b) The involvement of human placental microsomal cytochrome P-450 in aromatization. J Biol Chem 249:5373–5378

    PubMed  CAS  Google Scholar 

  • Tobet SA, Shim JH, Osiecki ST, Baum MJ, Canick JA (1985) Androgen aromatization and 5α-reduction in ferret brain during perinatal development: effects of sex and testosterone manipulation. Endocrinology 116:1869–1887

    Article  PubMed  CAS  Google Scholar 

  • Van der Schoot P (1980) Effects of dihydrotestosterone and oestradiol on sexual differentiation in male rats. J Endocrinol 84:397–407

    Article  PubMed  Google Scholar 

  • Van Doom EJ, Clark AF (1973) In vitro studies on the inhibition of pig liver steroid Δ4–5β-reductase activity by naturally occurring and synthetic estrogens. Biochem Biophys Acta 309:254–262

    Google Scholar 

  • Velasco ME, Taleisnik S (1969) Release of gonadotrophins induced by amygdaloid stimulation in the rat. Endocrinology 84:132–139

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven G (1980) Effect of neurotransmitters and follicle-stimulating hormone on the aromatization of androgens and the production of adenosine 3′,5′-monophosphate by cultured testicular cells. J Steroid Biochem 12:315–322

    Article  PubMed  CAS  Google Scholar 

  • Vockel A, Pröve E, Balthazart J (1988) The post-hatching development of testosterone-metabolizing enzymes in the brain of male and female zebra finch. Brain Res (in press)

    Google Scholar 

  • Voigt W, Fernandez EP, Hsia SL (1970) Transformation of testosterone into 17-β-hydroxy-5α-androstan-3-one by microsomal preparations of human skin. J Biol Chem 245:5594–5599

    PubMed  CAS  Google Scholar 

  • Vreeburg JTM, Schretlen PJM, Baum MJ (1975) Specific, high-affinity binding of 17β-estradiol in cytosols from several brain regions and pituitary of intact and castrated adult male rats. Endocrinology 97:969–977

    Article  PubMed  CAS  Google Scholar 

  • Wada M (1982) Effects of sex steroids on calling, locomotor activity, and sexual behavior in castrated male Japanese quail. Horm Behav 16:147–157

    Article  PubMed  CAS  Google Scholar 

  • Wallis CJ, Luttge WG (1975) Maintenance of male sexual behavior by combined treatment with oestrogen and DHT in CD-I mice. J Endocrinol 66:257–262

    Article  PubMed  CAS  Google Scholar 

  • Watson JT, Adkins-Regan E (1987) Testosterone, estradiol, and dihydrotestosterone concentration cells in the brain of the Japanese quail (Coturnix japonica): autoradiographic localization and analysis for sex differences. (In press)

    Google Scholar 

  • Weisz J, Gibbs C (1974) Conversion of testosterone and androstenedione to estrogens in vitro by the brain of female rats. Endocrinology 94:616–620

    Article  PubMed  CAS  Google Scholar 

  • Weisz J, Ward IL (1980) Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106:306–316

    Article  PubMed  CAS  Google Scholar 

  • Weniger JP, Zeis A (1982) Conversion of 5α-dihydrotestosterone to oestrone and oestradiol by the chick embryo ovary in organ culture. J Steroid Biochem 17:573

    Article  PubMed  CAS  Google Scholar 

  • Whalen RE, Debold JF (1974) Comparative effectiveness of T, androstenedione and DHT in maintaining mating behavior incastrated male hamster. Endocrinology 95:1674–1679

    Article  PubMed  CAS  Google Scholar 

  • Whalen RE, Luttge WG (1971) Testosterone, androstenedione, and dihydrotestosterone: effects on mating behavior of male rats. Horm Behav 2:117–125

    Article  CAS  Google Scholar 

  • Whitsett JM, Irvin EW, Edens FW, Thaxton JP (1977) Demasculinization of male Japanese quail by prenatal estrogen treatment. Horm Behav 8:254–263

    Article  PubMed  CAS  Google Scholar 

  • Yahr P (1979) Data and hypotheses in tales of dihydrotestosterone. Horm Behav 13:92–96

    Article  PubMed  CAS  Google Scholar 

  • Young CE, Rogers LJ (1978) Effects of steroidal hormones on sexual, attack, and search behavior in the isolated male chick. Horm Behav 10:107–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balthazart, J. (1989). Steroid Metabolism and the Activation of Social Behavior. In: Balthazart, J. (eds) Molecular and Cellular Basis of Social Behavior in Vertebrates. Advances in Comparative and Environmental Physiology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73827-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73827-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73829-6

  • Online ISBN: 978-3-642-73827-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics