Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 8))

Abstract

Rice, Oryza sativa L., is the world’s most important cereal food crop in terms of caloric intake. It contains about 72% glucoside and 10% protein (Standard Tables of Food Composition, Agency of Science and Technology, Japan 1986). In terms of total world grain production it is exceeded only by wheat. Rice is a warm area crop and is grown most extensively in the humid tropical and subtropical regions of the world. In temperate climates, and at high elevations, rice is grown as a summer crop. About 90% of the worlD’s rice is grown in the People’s Republic of China, India, Japan, Korea and southeastern Asia, outside of Asia, less than 10% is produced in the USA, Brazil, Africa and southern Europe (EAO 1985). Soybean, Glycine max (L.) Merr., is the worlD’s most important crop as a source of plant protein and oil. It contains about 35% protein, 19% lipid and 24% of glucoside (Standard Tables of Food Composition, Agency of Science and Technology, Japan 1986). The USA now accounts for about 48% of the world production of soybeans. China and Brazil account for another 33% of the worlD’s total production. The remaining production is scattered among various countries in Asia and South America (FAO 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdullah R, Cocking EC, Thompson JA (1986) Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4:1087–1090

    Article  Google Scholar 

  • Akada S, Hirai A, Uchimiya H (1983) Studies on mode of separation of chloroplast genomes in para-sexual hybrid calli. 1. Fraction I protein composition in unseparated hybrid callus. Plant iSci Lett 31:223–230

    Article  CAS  Google Scholar 

  • Aviv D, Bleishman S, Arzee-Gonen P, Galun E (1984) Intersectional cytoplasmic hybrids in Nicotiana: Identification of plastomes and chondriomes in N. sylvestris + N. rustka cybrids having N. sylvestris nuclear genomes. Theor Appl Genet 67:499–504

    Article  CAS  Google Scholar 

  • Bajaj YPS (1983) Somatic hybridization and cryopreservation studies on rice × pea and wheat × pea protoplasts. In: Potrykus I, Harms CT, Hinnen A, Hutter R, King PJ, Shillito RD (eds) Protoplasts 1983, Birkhäuser, Basel, pp 248–249

    Google Scholar 

  • Barwale UB, Kerns HR, Widholm JM (1986) Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta 167:473–481

    Article  CAS  Google Scholar 

  • Binding H, Nehls R (1978) Somatic cell hybridization of Viciafaba + Petunia hybrida. Mol Gen Genet 164:137–143

    Article  Google Scholar 

  • Chien YC, Kao KN, Wetter LR (1982) Chromosomal and isozyme studies of Nicotiana tabacum-Glycine max hybrid cell lines. Theor Appl Genet 62:301–304

    CAS  Google Scholar 

  • Chowhury VK, Widholm JM (1985) Callus production from photoautotrophic soybean cell culture protoplasts. Plant Cell Rep 4:289–292

    Article  CAS  Google Scholar 

  • Chu ZC, Wang CC, Sun CS, Xu Z, Zhu ZY, Yin GC, Bi FY (1975) Attempt at establishing a better medium for anther culture of rice by comparison between different nitrogen-sources. Sci Sin 2:484–490

    Google Scholar 

  • Constabel F, Weber G, Kirkpatrick JW, Rahl K (1976) Cell division of intergeneric protoplast fusion products. Z Pflanzenphysiol 79:1–7

    Google Scholar 

  • Coulibaly MY, Demarly Y (1986) Regeneration of plantlets from protoplasts of rice, Oryza sativa L. Z Pflanzenzlicht 96:79–81

    Google Scholar 

  • Deka PC, Sen SK (1976) Differentiation in calli originated from isolated protoplasts of rice (Oryza sativa L.) through plating technique. Mol Gen Genet 145:239–243

    Article  Google Scholar 

  • Donn G (1978) Cell division and callus regeneration from leaf protoplasts of Vicia narbenensis. Z Pflanzenphysiol 86:65–76

    CAS  Google Scholar 

  • Dudits D, Kao KN, Constabel F, Gamborg OL (1976) Fusion of carrot and barley protoplasts and division of heterokaryocytes. Can J Genet Cytol 18:263–269

    Google Scholar 

  • Evans DA, Sharp WR, Paddock EF (1977) Variation in callus proliferation and root morphogenesis in leaf tissue cultures of Glycine max strain T219. Phytomorphology 26:379–384

    Google Scholar 

  • FAO (1985) Vol. 39 Production Year book

    Google Scholar 

  • Fluhr R, Aviv D, Edelman M, Galun E (1983) Cybrids containing mixed and sorted-out chloroplasts following interspecific somatic fusions in Nicotiana. Theor Appl Genet 65:289–294

    Article  Google Scholar 

  • Frearson EM, Power JB, Cocking EC (1973) The isolation, culture and regeneration of Petunia leaf protoplasts. Dev Biol 33:130–137

    Article  PubMed  CAS  Google Scholar 

  • Fujimura T, Sakurai M, Akagi H, Negishi T, Hirose A (1985) Regeneration of rice plants from protoplasts. Plant Tissue Cult Lett 2:74–75

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Davis BP, Stahlhut RW (1983a) Somatic embryogenesis in cell cultures of Glycine species. Plant Cell Rep 2:209–212

    Article  Google Scholar 

  • Gamborg OL, Davis BP, Stahlhut RW (1983b) Cell division and differentiation in protoplasts from cell culture of Glycine species and leaf tissue of soybean. Plant Cell Rep 2:213–215

    Article  Google Scholar 

  • Hirai A (1982) Isoelectrofocusing of non-carboxymethylated fraction I protein from green callus. Plant Sci Lett 25:37–41

    Article  CAS  Google Scholar 

  • Horn ME, Sherrard JH, Widholm JM (1983) Photoautotrophic growth of soybean cells in suspension culture. Plant Physiol 72:426–429

    Article  PubMed  CAS  Google Scholar 

  • Imamura J (1984) Callus formation from tobacco (nia 115) + Triticum durum fusion hybrid. Plant Tissue Cult Lett 1:60–61

    Article  Google Scholar 

  • Kao KN (1977) Chromosomal behaviour in somatic hybrids of soybean-Nicotiana glauca. Mol Gen Genet 150:225–230

    Article  Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367

    Article  CAS  Google Scholar 

  • Kao KN, Michayluk M (1975) Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media. Planta 126:105–110

    Article  CAS  Google Scholar 

  • Kao KN, Keller WA, Miller RA (1970) Cell division in newly formed cells from protoplasts of soybean. Exp Cell Res 62:338–340

    Article  PubMed  CAS  Google Scholar 

  • Kao KN, Constabel F, Michayluk MR, Gamborg OL (1974) Plant protoplast fusion and growth of intergeneric hybrid cells. Planta 120:215–227

    Article  CAS  Google Scholar 

  • Kartha KK, Gamborg OL, Constabel F, Kao KN (1974) Fusion of rape seed and soybean protoplasts and subsequent division of heterokaryocytes. Can J Bot 52:2435–2436

    Article  Google Scholar 

  • Kyozuka J, Hayashi Y, Shimamoto K (1987) High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Theor Appl Genet 206:408–413

    CAS  Google Scholar 

  • Linsmaier EF, Skoog F (1965) Organic growth factor requirements of tobacco tissue culture. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Lu DY, Cooper-Bland S, Pental D, Cocking EC, Davey RM (1983) Isolation and sustained division of protoplasts from cotyledons of seedlings and immature seeds of Glycine max L. Z Pflanzenphysiol 111:389–394

    CAS  Google Scholar 

  • Maliga P, Lörz H, Lazak G, Nagy F (1982) Cytoplast-protoplast fusion for interspecific chloroplast transfer in Nicotiana. Mol Gen Genet 185:211–215

    Article  CAS  Google Scholar 

  • Medgyesy P, Menczel L, Maliga P (1980) The use of cytoplasmic streptomycin resistance. Chloroplast transfer from N. tabacum into N. sylvestris and isolation of their somatic hybrids. Mol Gen Genet 179:693–698

    Article  CAS  Google Scholar 

  • Menczel L, Nagy F, Kiss ZR, Maliga P (1981) Streptomycin resistant and sensitive somatic hybrids of AT. tabacum + N. knightiana. Correlation of resistance to N. tabacum plastids. Theor Appl Genet 59:191–195

    Article  CAS  Google Scholar 

  • Morel G, Wetmore RH (1951) Fern tissue culture. Am J Bot 38:141–143

    Article  CAS  Google Scholar 

  • Muller AJ, Grafe R (1978) Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol Gen Genet 161:67–76

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niizeki M, Kita F (1981) Cell division of rice and soybean and their fused protoplasts. Jpn J Breed 31:161–167

    Google Scholar 

  • Niizeki M, Kita F, Takahashi M (1982) Cell division in fused protoplasts of rice and soybean and their selection system. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 629–630

    Google Scholar 

  • Niizeki M, Tanaka M, Akada S, Hirai A, Saito K (1985) Callus formation of somatic hybrid of rice and soybean and characteristics of the hybrid callus. Jpn J Genet 60:81–92

    Article  Google Scholar 

  • Niizeki M, Tanaka M, Saito K (1986) Response of somatic hybrid callus between rice and soybean to streptomycin. Jpn J Breed 36:75–79

    CAS  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  PubMed  CAS  Google Scholar 

  • Ohira K, Ojima K, Fujiwara A (1973) Studies on the nutrition of rice cell culture I. A simple, defined medium for rapid growth in suspension culture. Plant Cell Physiol 14:1113–1121

    CAS  Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and technique for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Shillito RD, Paszkowski J, Potrykus I (1983) Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species. Plant Cell Rep 2:244–247

    Article  CAS  Google Scholar 

  • Toriyama K, Hinata K (1985) Cell suspension and protoplast culture in rice. Plant Sci 41:179–183

    Article  CAS  Google Scholar 

  • Tsai CK, Chien YC, Chou YL, Wu SX (1978) A further study on the isolation and culture of rice (Oryza sativa L.) protoplast. In: Proc Symp Plant Tissue Cult. Science Press, Peking, pp 317–324

    Google Scholar 

  • Wakasa K, Kobayashi K, Kanda H (1984) Colony formation from protoplasts of nitrate reductase deficient rice cell lines, J Plant Physiol 117:223–231

    CAS  Google Scholar 

  • Wetter LR (1977) Science Press, PekingIsozyme patterns in soybean-Nicotiana somatic hybrid cell lines. Mol Gen Genet 150:231–235

    Article  CAS  Google Scholar 

  • Wright MS, Koehler SM, Hinchee MA, Carnes MG (1986) Plant regeneration by organogenesis in Glycine max. Plant Cell Rep 5:150–154

    Article  CAS  Google Scholar 

  • Xu ZH, Davey MR, Cocking EC (1982) Callus formation from root protoplasts of Glycine max (soybean). Plant Sci Lett 24:111–115

    Article  CAS  Google Scholar 

  • Yamada Y, Yang ZQ Tang DT (1985) Regeneration of rice plants from protoplasts. Rice Genet Newslett 2:94

    Google Scholar 

  • Yamada Y, Yang ZQ, Tang DT (1986) Plant regeneration from protoplast-derived callus of rice (Oryza sativa L.). Plant Cell Rep 5:85–88

    Article  Google Scholar 

  • Zieg RG, Outka DE (1980) The isolation, culture and callus formation of soybean pod protoplasts. Plant Sci Lett 18:105–114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niizeki, M. (1989). Somatic Hybridization in Rice x Soybean. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering I. Biotechnology in Agriculture and Forestry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73614-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73614-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73616-2

  • Online ISBN: 978-3-642-73614-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics