Skip to main content

Integrable Equations in Multi-Dimensions (2+1) are Bi-Hamiltonian Systems

  • Conference paper
Solitons

Part of the book series: Springer Series in ((SSNONLINEAR))

  • 351 Accesses

Abstract

Recent developments by the authors in finding the recursion operators and the bi-Hamiltonian formulation of a large class of nonlinear evolution equations in (2+1)-dimensions is reviewed. The general theory associated with factorizable recursion operators in multidimensions is discussed. Both gradient and non-gradient master-symmetries are simply derived and their general theory is developed, using the Kadomtsev-Petviashvili equation as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Stud. Appl. Math. 53 (1974) 249;

    MathSciNet  Google Scholar 

  2. M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Phys. Rev. Lett. 30 (1983)1262; Phys. Rev. Lett. 31 (1973) 125.

    Article  MathSciNet  ADS  Google Scholar 

  3. M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Phys. Rev. Lett. 31 (1973) 125.

    Article  MathSciNet  ADS  Google Scholar 

  4. M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, Phys. Rev. Lett. 31 (1973) 125.

    Article  MathSciNet  ADS  Google Scholar 

  5. P. D. Lax, Comm. Pure Appl. Math. 21 (1968) 467.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Symes, J. Math. Phys. 20 (1979) 721.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. C. Newell, Proc. R. Soc. London Ser. A365 (1979) 283.

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Flaschka and A. C. Newell, Lecture Notes in Physics, Vol. 38 (Springer, Berlin, 1975), p. 355.

    Google Scholar 

  9. V. S. Gerdjikov, Lett. Math. Phys. 6 (1982) 315.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Boiti, F. Pempinelli, G. Z. Tu, Il Nuovo Cimento 79B (1984)231.

    MathSciNet  ADS  Google Scholar 

  11. M. Leo, R. Leo, G. Soliani, L. Solombrino, Lett. Al Nuovo Cimento 38 (1983) 45

    Article  MathSciNet  Google Scholar 

  12. M. Boiti, P. J. Caudrey, F. Pempinelli, Il Nuovo Cimento 83B (1984) 71.

    MathSciNet  ADS  Google Scholar 

  13. [F. W. Nijhoff, J. Van der Linden, G. R. Quispel, H. Capel, and J. Velthnizen, Physica 116A (1983) 1.

    ADS  Google Scholar 

  14. B. G. Konopelchenko, Phys. Lett. 75A (1980) 447;

    MathSciNet  ADS  Google Scholar 

  15. B. G. Konopelchenko, Phys. Lett. 79A (1980) 39;

    MathSciNet  ADS  Google Scholar 

  16. B. G. Konopelchenko, Phys. Lett. 95B (1980) 83;

    MathSciNet  ADS  Google Scholar 

  17. B. G. Konopelchenko, Phys. Lett. 100B (1981) 254;

    MathSciNet  ADS  Google Scholar 

  18. B. G. Konopelchenko, Phys. Lett. 108B (1987) 26;

    MathSciNet  ADS  Google Scholar 

  19. P. J. Olver and P. Rosenau, On the ‘Non-Classical’ Method for Group-Invariant Solutions of Differential Equations, Univ. of Minnesota Math. Re. No. 85–125, 1985.

    Google Scholar 

  20. B. Fuchssteiner, Nonlinear Anal. TMA 3 (1979) 849.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. S. Fokas and R. L. Anderson, J. Math. Phys. 23 (1982) 1066.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. F. Magri, J. Math. Phys. 19 (1979) 1156;

    Article  MathSciNet  ADS  Google Scholar 

  23. F. Magri, Nonlinear Evolution Equations and Dynamical Systems, ed. M. Boiti, F. Pempinelli and G. Soliani, Lecture Notes in Physics, Vol. 120 (Springer, New York, 1980), p. 233.

    Google Scholar 

  24. A. S. Fokas and B. Fuchssteiner, Lett. Nuovo Cimento 28 (1980) 299;

    Article  MathSciNet  Google Scholar 

  25. B. Fuchssteiner and A. S. Fokas, Physica 4D (1981) 47.

    MathSciNet  ADS  Google Scholar 

  26. I. M. Gel’fand and I. Ya. Dorfman, Funct. Anal. Appl. 13(1979)13; 14 (1980) 71.

    MathSciNet  MATH  Google Scholar 

  27. V. E. Zakharov and B. G. Konopelchenko, Comm. Math. Phys. 94 (1984) 483.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. A. S. Fokas and B. Fuchssteiner, Phys. Lett. A86 (1981) 341.

    MathSciNet  ADS  Google Scholar 

  29. A. S. Fokas and M. J. Ablowitz, Stud. Appl. Math. 68 (1983) 1.

    MathSciNet  MATH  Google Scholar 

  30. W. Oevel and B. Fuchssteiner, Phys. Lett. A88 (1982) 323.

    MathSciNet  ADS  Google Scholar 

  31. I. Y. Dorfman, Deformation of öamiltonian Structures and Integrable Systems (preprint).

    Google Scholar 

  32. B. Fuchssteiner, Prog. Theoret. Phy. 70 (1983) 150; I. Ya Dorfman, Deformations of Hamiltonian Structures and Integrable Systems (preprints).

    MathSciNet  Google Scholar 

  33. I. Gel’fand (private communication).

    Google Scholar 

  34. W. Oevel, A. Geometrical Approach to Integrable Systems Admitting Scaling Symmetries (preprint, 1986).

    Google Scholar 

  35. H. H. Chen, Y. C. Lee, J. E. Lin, Physica 9D (1983) 439

    MathSciNet  ADS  Google Scholar 

  36. H. H. Chen, Y. C. Lee, J. E. Lin, Phys. Lett. 91A (1982) 381.

    MathSciNet  ADS  Google Scholar 

  37. A. S. Fokas and P. M. Santini, Stud. Appl. Math. 75 (1986) 179.

    MathSciNet  MATH  Google Scholar 

  38. P. M. Santini and A. S. Fokas, Recursion Operators and Bi-Hamil-tonian Structures in Multidimensions I, INS #65, preprint 1986.

    Google Scholar 

  39. A. S. Fokas and P. M. Santini, Recursion Operators and Bi-Hamil-tonian Structures in Multidimensions II, INS #67, preprint 1986.

    Google Scholar 

  40. B. G. Konopelchenko and V. G. Dubrovsky, Physica 16D (1985) 79.

    MathSciNet  ADS  Google Scholar 

  41. F. Calogero and A. Degasperis, Nuovo Cimento 39B (1977) 1.

    MathSciNet  ADS  Google Scholar 

  42. P. Caudrey, Discrete and Periodic Spectral Transforms Related to the Kadomtsev-Petviashvili Equation, preprint UMIST (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fokas, A.S., Santini, P.M. (1988). Integrable Equations in Multi-Dimensions (2+1) are Bi-Hamiltonian Systems. In: Lakshmanan, M. (eds) Solitons. Springer Series in Nonlinear Dynamics . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73193-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73193-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73195-2

  • Online ISBN: 978-3-642-73193-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics