Skip to main content

Feeding, Stress, Exercise and the Supply of Amino Acids to the Brain

  • Conference paper
Amino Acid Availability and Brain Function in Health and Disease

Part of the book series: NATO ASI Series ((ASIH,volume 20))

Abstract

This chapter concerns some effects of food deprivation, feeding and stress on brain amino acids. In particular, it concerns amino acids which are precursors of transmitter amines. In the past, most attention has been paid to two of these, tyrosine and tryptophan, which through the action of tyrosine hydroxylase and tryptophan hydroxylase respectively are converted to 3,4-dihydroxyphenylalanine (dopa) and 5-hydroxytryptophan by reactions which are rate-limiting for catecholamine and 5-hydroxytryptamine (5-HT) synthesis. Various classical precursor loading experiments suggest that brain tyrosine hydroxylase is close to saturation with its substrate and is therefore relatively insensitive to altered substrate availability but that tryptophan hydroxylase is about 50% saturated (1, 2) and therefore more sensitive. Less attention has been paid to the fact that histidine decarboxylase is normally far below saturation with its precursor amino acid (3) and thus the synthesis of histamine is far more responsive to changes of precursor availability than are the syntheses of 5-HT or the catecholamines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CARLSSON, A., LINDQVIST, M. (1978). Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino acids in rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 303: 157–164.

    Article  PubMed  CAS  Google Scholar 

  2. SVED, A. F. (1983). Precursor control of the function of monoaminergic neurones. In: Nutrition and the Brain ( Wurtman, R. J., Wurtman, J. J., eds.), vol. 6, pp. 224–263, Raven Press, New York.

    Google Scholar 

  3. PARDRIDGE, W. M. (1986). Potential effects of the dipeptide sweetener aspartame on the brain. In: Nutrition and the Brain ( Wurtman, R. J., Wurtman, J. J., eds.), vol. 7, pp. 141–204, Raven Press, New York.

    Google Scholar 

  4. ENWONWU, C. 0. (1987). Differential effect of total food withdrawal and dietary protein restriction on brain content of free histidine in the rat. Neurochem. Res. 12: 483–487.

    Article  PubMed  CAS  Google Scholar 

  5. KNOTT, P. J., JOSEPH, M. H., CURZON, G. (1973). Effects of food deprivation and immobilization on tryptophan and other amino acids in rat brain. J. Neurochem. 20: 249–251

    Article  PubMed  CAS  Google Scholar 

  6. OLDENDORF, W. H., SZABO, J. (1976). Amino acid assignment to one of three blood-brain amino acid carriers. Am. J. Physiol. 230: 94–98.

    PubMed  CAS  Google Scholar 

  7. PARDRIDGE, W. M. (1979). Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J. Neurochem. 28: 103–118.

    Article  Google Scholar 

  8. CURZON, G., JOSEPH, M. H., KNOTT, P. J. (1972). Effects of immobilization and food deprivation on rat brain tryptophan metabolism. J. Neurochem. 19: 1969–1974.

    Article  Google Scholar 

  9. FERNSTROM, J. D., WURTMAN, R. J. (1971). Brain serotonin content: increase following ingestion of carbohydrate diet. Science 171: 1023–1025.

    Article  Google Scholar 

  10. SARNA, G. S., KANTAMANENI, B. D., CURZON, G. (1984). Variables influencing the effect of a meal on brain tryptophan. J. Neurochem. 44: 1575–1580.

    Article  Google Scholar 

  11. KNOTT, P. J., CURZON, G. (1972). Free tryptophan in plasma and brain tryptophan metabolism. Nature 239: 452–453.

    Article  PubMed  CAS  Google Scholar 

  12. CURZON, G., FRIEDEL, J., KNOTT, P. J. (1973). The effects of fatty acids on the binding of tryptophan to plasma protein. Nature 242: 198–200.

    Article  PubMed  CAS  Google Scholar 

  13. FERNSTROM, J. D., WURTMAN, R. J. (1973). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178: 414–416.

    Article  Google Scholar 

  14. CURZON, G. (1979). Methodological problems in the determination of total and free plasma tryptophan. J. Neurol. Trans. SuppL 15: 221–226.

    CAS  Google Scholar 

  15. PEREZ-CRUET, J., CHASE, T. N., MURPHY, D. L. (1974). Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in humans. Nature 248: 693–695.

    Article  PubMed  CAS  Google Scholar 

  16. GILLMAN, P. K., BARTLETT, J R., BRIDGES, P. K., HUNT, A., PATEL, A. J., KANTAMANENI, B. D., CURZON, G. (1981). Indolic substances in plasma, cerebrospinal fluid and frontal cortex of human subjects infused with saline or tryptophan. J. Neurochem. 37: 410–417.

    Article  PubMed  CAS  Google Scholar 

  17. FERNSTROM, J. D., LARIN, F., WURTMAN, R. J. (1973). Correlations between brain tryptophan and plasma neutral amino acid levels following food consumption in rats. Life Sci. 13: 517–524.

    Article  CAS  Google Scholar 

  18. CURZON, G. (1985). Effects of food intake on brain transmitter amine precursors and amine synthesis. In: Psychopharmacology and Food (Sandler, M., Silverstone, T.), pp. 59–70, Oxford.

    Google Scholar 

  19. MANS, A. M., BIEBUYCK, J. F., SAUNDERS, S. J., KIRSCH, R. E., HAWKINS, R. A. (1979). Tryptophan transport across the blood-brain barrier during acute hepatic failure. J. Neurochem. 33: 409–418.

    Article  PubMed  CAS  Google Scholar 

  20. SCRIVER, C. R., GREGORY, D. M., SOVETTS, D., TISSENBAUM, G. (1985). Normal plasma free amino acid values in adults: the influence of some common physiological variables. Metabolism 34: 868–873.

    Article  PubMed  CAS  Google Scholar 

  21. MILSON, J. P., MORGAN, M. Y., SHERLOCK, S. (1979). Factors affecting plasma amino acid concentrations in control subjects. Metabolism 28: 313–319.

    Article  Google Scholar 

  22. ASHLEY, D. V., BARCLAY, D. V., CHAUFFARD, F. A., MOENNOZ, D., LEATHWOOD, P. D. (1982). Plasma amino acid responses in humans to evening meals of differing nutritional composition. Am. J. Clin. Nutr. 36: 143–153.

    PubMed  CAS  Google Scholar 

  23. ASHLEY, D. V. M., LIARDON, R., LEATHWOOD, P. D. (1985). Breakfast meal composition influences plasma tryptophan to large neutral amino acid ratios of healthy lean young men. J. Neural. Trans. 63: 271–283.

    Article  CAS  Google Scholar 

  24. LEATHWOOD, P. D. This volume.

    Google Scholar 

  25. MOLLER, S. E. (1985). Effect of various oral protein doses on plasma neutral amino acid levels. J. Neural. Trans. 61: 183–191.

    Article  CAS  Google Scholar 

  26. YOKOHOSHI, H., WURTMAN, R. J. (1986). Meal composition and plasma amino acid ratios: effect of various proteins or carbohydrates and of various protein concentrations. Metabolism 35: 837–842.

    Article  Google Scholar 

  27. GLAESER, B. S., MAHER, T. J., WURTMAN, R. J. (1983). Changes in brain levels of acidic, basic and neutral amino acids after consumption of single meals containing various proportions of protein. J. Neurochem. 41: 1016–1021

    Article  PubMed  CAS  Google Scholar 

  28. BLOXAM, D. L., CURZON, G. (1978). A study of proposed determinants of brain tryptophan concentration in rats after portocaval anastomosis or sham operation. J. Neurochem. 31: 1255–1263.

    Article  PubMed  CAS  Google Scholar 

  29. SARNA, G. S., TRICKLEBANK, M. D., KANTAMANENI, B. D., HUNT, A., PATEL, A. J., CURZON, G. (1982). Effect of age on variables influencing the supply of tryptophan to the brain. J. Neurochem. 39: 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  30. FERNSTROM, J. D., FERNSTROM, M. H., GRUBB, P. E. (1987). Twenty-four-hour variations in rat blood and brain levels of the aromatic and branched-chain amino acids: chronic effects of dietary protein content. Metabolism 36: 643–650.

    Article  PubMed  CAS  Google Scholar 

  31. BLISS, E. L., AILION, J., ZWANZIGER, J. (1968). Metabolism of norepinephrine serotonin and dopamine in rat brain with stress. J. Pharm. Exp. Ther. 164: 122–134.

    CAS  Google Scholar 

  32. CURZON, G., KNOTT, P. J. (1974). Fatty acids and the disposition of tryptophan. In: Aromatic Amino Acids in the Brain (Ciba Foundation Symposium 22), pp. 217–229, Elsevier.

    Google Scholar 

  33. KENNETT, G. A., CURZON, G., HUNT, A., PATEL, A. J. (1986). Immobilization decreases amino acid concentrations in plasma but maintains or increases them in brain. J. Neurochem. 46: 208–212.

    Article  PubMed  CAS  Google Scholar 

  34. MILAKOFSKY, L., HARE, T. A., MILLER, J. M., VOGEL, W. H. (1985). Rat plasma levels of amino acids and related compounds during stress. Life Sci. 36: 753–761

    Article  PubMed  CAS  Google Scholar 

  35. HUTSON, P. H., KNOTT, P. J., CURZON, G. (1980). Effect of isoprenaline infusion on the distribution of tryptophan, tyrosine and isoleucine, between brain and other tissues. Biochem. Pharmac. 29: 509–516.

    Article  CAS  Google Scholar 

  36. SHAMOON, H., JACOB, R., SHERWIN, R. S. (1980). Epinephrine induced hypoaminoacidemia in normal and diabetic subjects: effects of blockade. Diabetes 11: 875–881

    Article  Google Scholar 

  37. PARDRIDGE, W. M. (1977). Regulation of amino acid availability to the brain. In: Nutrition and the Brain (Wurtman, R. J., Wurtman, J. J., eds.), vol. i, pp. 141–204. Raven Press, New York.

    Google Scholar 

  38. MANS, A. M., BIEBUYCK, J. F., DAVIS, D. W., HAWKINS, R. A. (1984). Portocaval anastomosis: brain and plasma metabolite abnormalities and the effect of nutritional therapy. J. Neurochem. 43: 697–705.

    Article  PubMed  CAS  Google Scholar 

  39. BELOVA, T. I., JONSSON, G. (1982). Blood-brain barrier permeability and immobilization stress. Acta. Physiol. Scand. 116: 21–29.

    Article  PubMed  CAS  Google Scholar 

  40. HAWKINS, R. A., MANS, A. M., BIEBUYCK, J. E. (1982). Amino acid supply to individual cerebral structures in awake and anaesthetized rats. Am. J. Physiol. 242: E1 - E11.

    PubMed  CAS  Google Scholar 

  41. OHATA, M., FREDERICKS, W. R., SUNDARAM, V., RAPOPORT, S. I. (1981). Effect of immobilization stress on regional cerebral blood flow in the conscious rat. J. Cereb. Blood Flow Metab. 1: 187–194.

    Article  PubMed  CAS  Google Scholar 

  42. LANGER, P., FOLDES, O., KVETNANSKY, L., CALMAN, J., TORDA, T., DAHER, F. (1983). Pituitary-thyroid function during acute immobilization stress in rats. Exp. Clin. Endocrinol. 82: 51–60.

    Article  PubMed  CAS  Google Scholar 

  43. DANIEL, P. M., LOVE, E. R., PRATT, O. E. (1975). Hypothyroidism and amino acid entry into brain and muscle. Lancet 2: 872.

    Article  PubMed  CAS  Google Scholar 

  44. ERIKSSON, T., CARLSSON, A. (1982). Isoprenaline increases brain concentrations of administered L-DOPA and L-tryptophan in the rat. Psychopharmacology (Berlin) 77: 98–100.

    Article  CAS  Google Scholar 

  45. KANT, G. J., LENOX, R. H., BUNNELL, B. N., MOUGEY, E. H., PENNINGTON, L. L., MEYERHOFF, J. L. (1983). Comparison of stress responses in male and female rats: pituitary cyclic AMP and plasma prolactic growth hormone and corticosterone. Psychoneuroendocrinology 8: 421–428.

    Article  PubMed  CAS  Google Scholar 

  46. COCCHI, D., GIULIO, A., GROPPETTI, A., MANTEGAZZA, P., MULLER, E. E., SPANO, P. F. (1975). Hormonal imputs and brain tryptophan metabolism: the effect of growth hormone. Experientia 31: 384–385.

    Article  PubMed  CAS  Google Scholar 

  47. TANG, L. C., COTZIAS, G. C. (1976). Modification of the actions of some neuroactive drugs by growth hormone. Arch. Neurol. 33: 131–134.

    PubMed  CAS  Google Scholar 

  48. PARDRIDGE, W. M. (1979). Tryptophan transport through the blood-brain barrier: in vivo measurement of free and albumin-bound amino acid. Life Sci. 25: 1519–1528.

    Article  PubMed  CAS  Google Scholar 

  49. KNOTT, P. J., HUTSON, P. H., CURZON, G. (1977). Fatty acid and tryptophan changes on disturbing groups of rats and caging them singly. PharmacoL Biochem. Behay. 7: 245–252.

    Article  CAS  Google Scholar 

  50. BANOS, G., DANIEL, R. M., MOORHOUSE, S. R., PRATT, O. E. (1974). Inhibition of entry of some amino acids into the brain with observations on mental retardation in the aminoacidurias. PsychoL Med. 4: 262–269.

    Article  PubMed  CAS  Google Scholar 

  51. MARCOU, M., KENNETT, G. A., CURZON, G. (1987). Enhancement of brain dopamine metabolism by tyrosine during immobilization: an in vivo study using repeated cerebrospinal fluid sampling in conscious rats. J. Neurochem. 48: 1245–1251

    Article  PubMed  CAS  Google Scholar 

  52. CHAOULOFF, F., ELGHOZI, J. L., GUEZENNEC, Y., LAUDE, D. (1985). Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. Br. J. Pharmacol. 86: 33–41.

    PubMed  Google Scholar 

  53. CHAOULOFF, F., LAUDE, D., GUEZENNEC, Y., ELGHOZI, J. L. (1986). Motor activity increases tryptophan, 5-hydroxyindoleacetic acid and homovanillic acid in ventricular cerebrospinal fluid of the conscious rat. J. Neurochem. 46: 1313–1316.

    Article  PubMed  CAS  Google Scholar 

  54. CHAOULOFF, F., KENNETT, G. A., SERRURRIER, B., MERINO, D., CURZON, G. (1986). Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. J. Neurochem. 46: 1647–1650.

    Article  PubMed  CAS  Google Scholar 

  55. AHLBORG, G., FELIG, P., HAGENFELDT, L., HENDLER, R., WAHREN, J. (1974). Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53: 1080–1090.

    Article  PubMed  CAS  Google Scholar 

  56. FELIG, P., WAHREN, J. (1971). Amino acid metabolism in exercising man. J. Clin. Invest. 50: 2703–2714.

    Article  PubMed  CAS  Google Scholar 

  57. MUTCH, B. J. C., BANISTER, E. W. (1983). Ammonia metabolism in exercise and fatigue: a review. Med. Sci. Sports. Exerc. 15: 41–50.

    PubMed  CAS  Google Scholar 

  58. CHAOULOFF, F., LAUDE, D., MIGNOT, E., KAMOUN, P., ELGHOZI, J. L. (1985). Tryptophan and serotonin turnover rate in the brain of genetically hyperammonaemic mice. Neurochem. Int 7: 143–153.

    Article  PubMed  CAS  Google Scholar 

  59. HAWKINS, R. A., MILLER, A. L., NIELSEN, R. C., VEECH, R. M. (1973). The acute action of ammonia in rat brain metabolism in vivo. Biochem. J. 134: 1001–1008.

    PubMed  CAS  Google Scholar 

  60. RIGOTTI, P., JONUNG, T., PETERS, J. C., JAMES, J. H., FISCHER, R. E. (1985). Methionine sulfoximine prevents the accumulation of large neutral amino acids in brain of portocaval shunted rats. J. Neurochem. 44: 929–933.

    Article  PubMed  CAS  Google Scholar 

  61. SWENSON, R. M., VOGEL, W. H. (1983). Plasma catecholamine and corticosterone as well as brain catecholamine changes during coping in rats exposed to stressful footshock. Pharmacol. Biochem. Behay. 18: 689–693.

    Article  CAS  Google Scholar 

  62. WEISS, J. M., GOODMAN, P. A., LOSITO, B. C., CORRIGAN, S., CHARRY, J. M., BAILEY, W. H. (1981). Behavioural depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine and serotonin levels in various regions of rat brain. Brain Res. Rev. 3: 167–205.

    Article  CAS  Google Scholar 

  63. PETERS, J. C., HARPER, A. E. (1987). Acute effects of dietary proteins on food intake, tissue amino acids and brain serotonin. Am. J. PhysioL 252: R902 - R914.

    PubMed  CAS  Google Scholar 

  64. FERNSTROM, J. D. (1987). Food induced changes in brain serotonin synthesis: is there a relationship to appetite for specific macronutrients? Appetite 8: 163–182.

    Article  PubMed  CAS  Google Scholar 

  65. SUGRUE, M. F. (1987). Neuropharmacology of drugs affecting food intake. Pharmacol. Ther. 32: 145–182.

    Article  PubMed  CAS  Google Scholar 

  66. KENNETT, G. A., DOURISH, C. T., CURZON, G. (1987). 5-HT1B; agonists induce anorexia at a post-synaptic site. Eur. J. Pharmacol. 141: 429–435.

    Article  Google Scholar 

  67. HUTSON, P. H., DOURISH, C. T., CURZON, G. (1988). Evidence that the hyperphagic response to 8-OH-DPAT is mediated by 5-HT1A receptors. Eur. J. Pharmacol. (in press).

    Google Scholar 

  68. HUTSON, R. H., SARNA, G. S., KANTAMANENI, B. D., CURZON, G. (1985). Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid sampling and brain dialysis. J. Neurochem. 44: 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  69. SILVERSTONE, T., GOODALL, E. (1986). Serotonergic mechanisms in human feeding: the pharmacological evidence. Appetite (SuppL) 7: 85–97.

    CAS  Google Scholar 

  70. HRBOTICKY, N., LEITER, L. A., ANDERSON, G. H. (1985). Effects of L-tryptophan on short term food intake in lean men. Nutrition Res. 5: 595–607.

    Article  CAS  Google Scholar 

  71. JOSEPH, M. H., KENNETT, G. A. (1983). Corticosteroid response to stress depends upon increased tryptophan availability. Psychopharmacology 79: 79–81

    Article  PubMed  CAS  Google Scholar 

  72. YEHUDA, R., MEYER, J. S. (1984). A role for serotonin in the hypothalamic-pituitary adrenal response to insulin stress. Neurochemistry 38: 25–32.

    CAS  Google Scholar 

  73. ALOI, J. A., INSEL, R. T., MUELLER, E. A., MURPHY, J. A. (1984). Neuroendocrine and behavioural effects of m-chlorophenylpiperazine administration in rhesus monkeys. Life Sci. 34: 1325–1331

    Article  PubMed  CAS  Google Scholar 

  74. KOENIG, J. I., GUDELSKY, G. A., MELTZER, H. Y. (1987). Stimulation of corticosterone and B-endorphin secretion in the rat by selective 5-HT receptor subtype activation. Eur. J. Pharmacol. 137: 1–8.

    Article  PubMed  CAS  Google Scholar 

  75. KELLY, S. J., FRANKLIN, K. B. J. (1984). Evidence that stress augments morphine analgesia by increasing brain tryptophan. Neurosci. Lett. 44: 305–310.

    Article  PubMed  CAS  Google Scholar 

  76. RANSFORD, C. P. (1982). A role for amines in the antidepressant effect of exercise: a review. Med. Sci. Sports Exerc. 14: 1–10.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Curzon, G. (1988). Feeding, Stress, Exercise and the Supply of Amino Acids to the Brain. In: Huether, G. (eds) Amino Acid Availability and Brain Function in Health and Disease. NATO ASI Series, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73175-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-73175-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-73177-8

  • Online ISBN: 978-3-642-73175-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics