Skip to main content

Distribution of Catecholamines in Central and Peripheral Organs of the Fetal Guinea Pig During Normoxaemia, Hypoxaemia, and Asphyxia

  • Conference paper
The Endocrine Control of the Fetus

Abstract

During intra-uterine hypoxia and asphyxia the centralization of the fetal circulation improves fetal survival. Together with simultaneous metabolic changes, supplies of both oxygen and substrates to the essential organs are maintained (Eisner et al. 1969; Cohn et al. 1974; Jones 1977; Peeters et al. 1979; Sheldon et al. 1979; Reuss et al. 1982; Jensen et al. 1985, 1987a; Jensen and Lang, this volume).

This investigation was supported by the Deutsche Forschungsgemeinschaft (Je 108/1; Je 108/4–1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson SL, Patrick JE, Challis JRG (1984) Effects of naloxone on the breathing, heart rate, glucose and Cortisol responses to hypoxia in the sheep fetus. J Dev Physiol 6: 495–507

    PubMed  CAS  Google Scholar 

  • Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide-trihydroxyin-dole procedure for the analysis of catecholamines. J Pharm Exp Ther 138: 360–375

    CAS  Google Scholar 

  • Brown RM, Kehr W, Carlsson A (1975) Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res 85: 491–509

    Article  PubMed  CAS  Google Scholar 

  • Castren O, Saarikoski S (1974) The simultaneous function of catechol- O-methyltransferase and monoamine oxidase in human placenta. Acta Obstet Gynecol Scand 53: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee S, Ghosh A (1982) Influence of experimental scurvy on adrenomedullary catecholamine levels in birds and mammals. Cell Mol Biol 28 (4): 401–403

    PubMed  CAS  Google Scholar 

  • Chen CH, Klein DC, Robinson JC (1974) Catechol-O-methyltransferase in rat placenta, human placenta and chorion carcinoma grown in culture. J Reprod Fertil 39: 407–410

    Article  PubMed  CAS  Google Scholar 

  • Cohen WR, Piasecki GJ, Jackson BT (1982) Plasma catecholamines during hypoxemia in fetal lamb. Am J Physiol 243: R520–R525

    PubMed  CAS  Google Scholar 

  • Cohen WR, Piasecki GJ, Cohn HE, Young JB, Jackson BT (1984) Adrenal secretion of catecholamines during hypoxemia in fetal lamb. Endocrinology 114 (2): 383–390

    Article  PubMed  CAS  Google Scholar 

  • Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120 (6): 817–824

    PubMed  CAS  Google Scholar 

  • Cohn HE, Piasecki GJ, Jackson BT (1982) The effect of β-adrenergic stimulation on fetal cardiovascular function during hypoxemia. Am J Obstet Gynecol 144: 810–816

    PubMed  CAS  Google Scholar 

  • Comline RS, Silver M (1961) The release of adrenaline and noradrenaline from the adrenal glands of the foetal sheep. J Physiol 156: 424–444

    PubMed  CAS  Google Scholar 

  • Comline RS, Silver IA, Silver M (1965) Factors responsible for the stimulation of the adrenal medulla during asphyxia in the foetal lamb. J Physiol 178: 211–238

    PubMed  CAS  Google Scholar 

  • Court DJ, Parer JT, Block BSB, Llanos AJ (1984) Effects of beta-adrenergic blockade on blood flow distribution during hypoxemia in fetal sheep. J Dev Physiol 6: 349–358

    PubMed  CAS  Google Scholar 

  • Davis JN, Carlsson A (1973) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanaesthetized rat brain. J Neurochem 20: 913–915

    Article  PubMed  CAS  Google Scholar 

  • Eisner R, Hammond DD, Parker HR (1969) Circulatory responses to asphyxia in pregnant and fetal animals: a comparative study of Weddell seals and sheep. Yale J Biol Med 42: 202–217

    Google Scholar 

  • Euler US von (1954) Adrenaline and noradrenaline. Distribution and action. Pharmacol Rev 6:15–22

    Google Scholar 

  • Fisher DJ, Heymann MA, Rudolph AM (1982) Fetal myocardial oxygen and carbohydrate metabolism in sustained hypoxemia in utero. Am J Physiol 243: H959–H963

    PubMed  CAS  Google Scholar 

  • Folkow B, Häggendal J, Lisander B (1967) Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta Physiol Scand [Suppl] 307: 5–38

    Google Scholar 

  • Fuller RW, Hemrick-Luecke SK (1983) Species differences in epinephrine concentration and norepinephrine N-methyl-transferase activity in hypothalamus and brain stem. Comp Bio-chem Physiol 74C (1): 47–49

    Article  CAS  Google Scholar 

  • Graham RW, Scothorne RJ (1970) Calcium homeostasis in the foetal guinea pig. Q J Exp Physiol 55: 44–53

    CAS  Google Scholar 

  • Greenberg RE, Lind J (1961) Catecholamines in tissues of the human fetus. Pediatrics 27: 904–911

    PubMed  CAS  Google Scholar 

  • Gu W, Jones CT, Parer JT (1985) Metabolic and cardiovascular effects on fetal sheep of sustained reduction of uterine blood flow. J Physiol 368:109–129

    PubMed  CAS  Google Scholar 

  • Iisalo E, Castren O (1967) The enzymatic inactivation of noradrenaline in human placental tissue. Ann Med Exp Biol Fenn 45: 253–257

    PubMed  CAS  Google Scholar 

  • Iversen LL (1967) The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press, Cambridge

    Google Scholar 

  • Jensen A, Künzel W, Hohmann M (1985) Dynamics of fetal organ blood flow redistribution and catecholamine release during acute asphyxia. In: Jones CT, Nathanielsz PW (eds) The physiological development of fetus and newborn. Academic, London, pp 405–410

    Google Scholar 

  • Jensen A, Hohmann M, Künzel W (1987 a) Redistribution of fetal circulation during repeated asphyxia in sheep: effects on skin blood flow, transcutaneous PO2, and plasma catecholamines. J Dev Physiol 9: 41–55

    PubMed  CAS  Google Scholar 

  • Jensen A, Künzel W, Kastendieck E (1987 b) Fetal sympathetic activity, transcutaneous PO2, and skin blood flow during repeated asphyxia in sheep. J Dev Physiol 9: 337–346

    PubMed  CAS  Google Scholar 

  • Jones CT (1977) The development of some metabolic responses to hypoxia in the foetal sheep. J Physiol 266: 743–762

    Google Scholar 

  • Jones CT, Ritchie JWK (1983) The effect of adrenergic blockade on the fetal response to hypoxia. J Dev Physiol 5: 211–222

    PubMed  CAS  Google Scholar 

  • Jones CT, Robinson RO (1975) Plasma catecholamines in foetal and adult sheep. J Physiol 248:15–33

    PubMed  CAS  Google Scholar 

  • Jones CT, Rurak D (1976) The distribution and clearance of hormones and metabolites in the circulation of the foetal sheep. Q J Exp Physiol 61: 287–295

    CAS  Google Scholar 

  • Kärki N, Kuntzman R, Brodie BB (1962) Storage, synthesis, and metabolism of monoamines in the developing brain. J Neurochem 9: 53–58

    Article  PubMed  Google Scholar 

  • Kopin I (1978) Plasma catecholamines: a brief overview. In: Usdin E, Kopin I, Barchas J (eds) Catecholamines: basic and clinical frontiers, vol 1. Pergamon, pp 897–902

    Google Scholar 

  • Lewis AB, Evans WN, Sischo W (1982) Plasma catecholamine responses to hypoxemia in fetal lambs. Biol Neonate 41:115–122

    Article  PubMed  CAS  Google Scholar 

  • Lewis AB, Wolf JW, Sischo W (1984) Cardiovascular and catecholamine responses to successive episodes of hypoxemia in the fetus. Biol Neonate 45:105–111

    Article  PubMed  CAS  Google Scholar 

  • Lorijn RHW, Longo LD (1980) Norepinephrine elevation in the fetal lamb: oxygen consumption and cardiac output. Am J Physiol 239: R115–R122

    PubMed  CAS  Google Scholar 

  • Mandel P, Mack G, Goridis C (1975) Function of the central catecholaminergic neuron: synthesis, release and inactivation of transmitter. In: Friedhoff AF (ed) Catecholamines and behavior. Plenum, New York, pp 1–40 (Basic neurobiology, vol 1)

    Google Scholar 

  • Paulick R, Kastendieck E, Wernze H (1985) Catecholamines in arterial and venous umbilical blood: placental extraction, correlation with fetal hypoxia, and transcutaneous partial oxygen tension. J Perinat Med 13: 31–42

    Article  PubMed  CAS  Google Scholar 

  • Peeters LLH, Sheldon RR, Jones MD Jr, Makowski EL, Meschia G (1979) Blood flow to fetal organs as a function of arterial oxygen content. Am J Obstet Gynecol 135 (5): 637–646

    PubMed  CAS  Google Scholar 

  • Phillippe M (1983) Fetal catecholamines. Am J Obstet Gynecol 146 (7): 840–855

    PubMed  CAS  Google Scholar 

  • Reuss ML, Parer JT, Harris JL, Krueger TR (1982) Hemodynamic effects of alpha-adrenergic blockade during hypoxia in fetal sheep. Am J Obstet Gynecol 142 (4): 410–415

    PubMed  CAS  Google Scholar 

  • Saarikoski S (1974) Fate of norepinephrine in the human foetoplacental unit. Acta Physiol Scand[Suppl] 421:1–82

    CAS  Google Scholar 

  • Sheldon RE, Peeters LLH, Jones MD Jr, Makowski EL, Meschia G (1979) Redistribution of cardiac output and oxygen delivery in the hypoxemic fetal lamb. Am J Obstet Gynecol 135 (8): 1071–1078

    PubMed  CAS  Google Scholar 

  • Tatsuoka MM (1971) Multivariate analysis. Wiley, New York

    Google Scholar 

  • Wagner J, Vitali P, Palfreyman MG, Zraika M, Huot S (1982) Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphenyl-alanine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, serotonin, and 5-hydroxyindoleacetic acid in rat cerebrospinal fluid and brain by high performance liquid chromatography with electrochemical detection. J Neurochem 38 (5): 1241–1254

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jelinek, J., Jensen, A. (1988). Distribution of Catecholamines in Central and Peripheral Organs of the Fetal Guinea Pig During Normoxaemia, Hypoxaemia, and Asphyxia. In: Künzel, W., Jensen, A. (eds) The Endocrine Control of the Fetus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-72975-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72975-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-72977-5

  • Online ISBN: 978-3-642-72975-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics