Skip to main content

Reaktionen der Tonminerale

  • Chapter

Zusammenfassung

Eine der wichtigsten Eigenschaften der Tonminerale ist ihr ausgeprägtes Kationenaustauschvermögen. Die Höhe des Kationenaustauschvermögens wird durch die Menge der Zwischenschichtkationen bestimmt, deren Anzahl (pro Formeleinheit) durch die Schichtladung festgelegt und pH-Wert unabhängig ist. Unter den üblichen Bedingungen können nur bei Smectiten und Vermiculiten alle Zwischenschichtkationen gegen andere Kationen ausgetauscht werden. In den Glimmern und Illiten sind die Kaliumionen so fest gebunden, daß unter normalen Bedingungen nur die an den Rändern und Außenflächen liegenden Kationen ausgetauscht werden; das Kationenaustauschvermögen ist wesentlich kleiner als die Menge der austauschfähigen Kationen (Tabelle 3.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abudelgawad G, Viani BE, Dixon JB (1985) Palygorskit separation from dodecylammonium-treated clays. Clays Clay Min 33: 438

    Google Scholar 

  2. Ahn JH, Peacor DR (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition. Clays Clay Min 34: 165; 180

    Google Scholar 

  3. Alther G (1986) The effect of the exchangeable cations on the physicochemical properties of Wyoming bentonites. Appl Clay Sci 1: 273

    Google Scholar 

  4. Andreoli CY, Robert M, Pons CH (1989) First steps of smectite-illite transformation with humecation and desiccation cycles. Appl Clay Sci 4: 423

    Google Scholar 

  5. Annabi-Bergaya F, Cruz IM, Gatineau L, Fripiat J J (1981) Adsorption of alcohols by smectites. Clay Min 16: 115

    Google Scholar 

  6. Armstrong DE, Chesters G (1964) Properties of protein-bentonite complexes as influenced by equilibration conditions. J Soil Sci 98: 39

    Google Scholar 

  7. Babich H, Stotzky G (1980) Reductions in inactivation rates of bacteriophages by clay minerals in lake water. Water Res 14: 185

    Google Scholar 

  8. Barak P (1989) Double layer theory prediction of Al-Ca exchange on clay and soil. J Colloid Interface Sci 133: 479

    Google Scholar 

  9. Barrer RM (1986) Expanded clay minerals. J Inclusion Phenomena 4: 109

    Google Scholar 

  10. Barrer RM (1989) Clay minerals as selective and shape-selective sorbents. Pure Appl Chem 61: 1903

    Google Scholar 

  11. Barshad I (1969) Preparation of H saturated montmorillonite. Soil Sci 108: 38

    Google Scholar 

  12. Bell TE (1986) Microstructure in mixed-layer illite/smectite and its relationship to the reaction of smectite to illite. Clays Clay Min 34: 146

    Google Scholar 

  13. Beneke K, Lagaly G (1982) The brittle mica-like KNiAsO4 and its organic derivatives. Clay Min 17: 175

    Google Scholar 

  14. Bergseth H, Singh BR, Stuanes A (1974) Deviation from equivalent ion exchange in humus material using 89Sr2+ for determination of cation exchange capacity. Coll Polym Sei 252: 555

    Google Scholar 

  15. Bergseth H (1980) Selektivität von Illit, Vermiculit und Smectit gegenüber Cu2+, Pb2+, Zn2+, Cd2+ und Mn2+. Acta Agriculturae Scan 30: 460

    Google Scholar 

  16. Bergseth H (1982) Einfluß von Temperaturerhöhung auf die Selektivität eines suspendierten Vermiculits gegenüber Cu2+, Zn2+ und Cd2+. Acta Agriculturae Scan 32: 373

    Google Scholar 

  17. Berkheiser V, Mortland MM (1975) Variability in exchange ion position in smectite: Dependence on interlayer solvent. Clays Clay Min 23: 404

    Google Scholar 

  18. Besson G, Mifsud C, Tschoubar C, Mering J (1974) Order and disorder relations in the distribution of the substitutions in smectites, illites and vermiculites. Clays Clay Min 22: 379

    Google Scholar 

  19. Botero IY, Bruant M, Cases IM, Canet D, Fiessinger F (1988) Adsorption of nonionic polyacrylate on sodium montmorillonite. J Colloid Interface Sci 124: 515

    Google Scholar 

  20. Braganza LF, Crawford RJ, Smalley MV, Thomas RK (1990) Swelling of butylammonium vermiculite in water. Clays Clay Min 38: 90

    Google Scholar 

  21. Brandenburg U, Lagaly G (1988) Rheological properties of sodium montmorillonite dispersions. Appl Clay Sci 3: 263

    Google Scholar 

  22. Brindley GW, Ray S (1964) Complexes of Ca-montmorillomte with primary monohydric alcohols. Am Min 49: 106

    Google Scholar 

  23. Brindley GW (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites. Clay Min 6: 237

    Google Scholar 

  24. Brindley GW, Thompson TD (1970) Methylene blue adsorption by montmorillonites. Determination of surface areas and exchange capacities with different initial cation saturations. Israel J Chem 8: 409

    Google Scholar 

  25. Brindley GW, Ertem G (1971) Preparation and solvation properties of some variable charge montmorillonites. Clays Clay Min 19: 399

    Google Scholar 

  26. Brouwer E, Baeyens B, Maes A, Cremers A (1983) Cesium and rubidium ion exchange equilibria in illite clay. J Phys Chem 87: 1213

    Google Scholar 

  27. Cady SS, Pinnavaia TJ (1978) Porphyrin intercalation in mica-type silicates. Inorg Chem 17: 1501

    Google Scholar 

  28. Cairns-Smith AG, Hartmann H (1986) Clay minerals and the origin of life. Cambridge University Press

    Google Scholar 

  29. De la Calle C, Suquet H, Dubernat J, Pezerat H (1978) Mode d’empilement des feuillets dans les vermiculites hydratées à deux couches. Clay Min 13: 275

    Google Scholar 

  30. Calvert CS (1984) Simplified complete CsCl-hydrazine-dimethylsulfoxide intercalation of kaolinite. Clays Clay Min 32: 125

    Google Scholar 

  31. Carr RM, Chin H (1971) Complexes of halloysite with organic compounds. Clay Min 9: 153

    Google Scholar 

  32. Cebula DJ, Thomas RK, White JW (1981) Diffusion of water in Li+-montmorillonite studied by quasi-elastic neutron scattering. Clays Clay Min 29: 241

    Google Scholar 

  33. Cenens J, Schoonheyd RA (1988) Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension. Clays Clay Min 36: 214

    Google Scholar 

  34. Chenu C, Pons CH, Robert M (1987) Interaction of kaolinite and montmorillonite with neutral polysaccharides. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Internat Clay Conf, Denver 1985. The Clay Mineral Soc, Bloomington, Indiana pp 375–381

    Google Scholar 

  35. Chenu C, Jaunet AM (1990) Modification de l’organisation texturale d’une montmorillonite calcique liées à l’adsorption d’un polysaccharide. C R Acad Sci Paris, t 310, Serie II, 975

    Google Scholar 

  36. Clementz DM (1976) Interaction of petroleum heavy ends with montmorillonite. Clays Clay Min 24: 312

    Google Scholar 

  37. Cornejo J, Steinle J, Boehm HP (1978) Die Oberflächenacidität von Titandioxid und von mit Phosphationen belegtem Titandioxid. Z Naturforsch 33b: 1238

    Google Scholar 

  38. Costanzo PM, Giese RF (1990) Ordered and disordered organic intercalates of 8.4-Å, synthetically hydrated kaolinite. Clays Clay Min 38: 160

    Google Scholar 

  39. Czarnecka E, Gillot JE (1980) Formation and characterization of clay complexes with bitumen from Athabasca oil sand. Clays Clay Min 28: 197

    Google Scholar 

  40. Dean KR, McAtee JL (1986) Asphaltene adsorption on clay. Appl Clay Sci 1: 313

    Google Scholar 

  41. Dékány I, Szántó F, Weiss A, Lagaly G (1985) Interlamellar liquid sorption on hydrophobic silicates. Ber Bunsenges Phys Chem 89: 62

    Google Scholar 

  42. Dékány I, Szántó F, Weiss A, Lagaly G (1986) Interactions of hydrophobic layer silicates with alcohol-benzene mixtures. Ber Bunsenges Phys Chem 90: 422

    Google Scholar 

  43. Delville A, Grangjean J, Laszlo P (1991) Order aquisition by clay platelets in a magnetic field. NMR study of the structure and microdynamics of the adsorbed water layer. J Phys Chem 95: 1383

    Google Scholar 

  44. Dodson PJ, Somasundaran P (1984) Desorption of polyacrylamide and hydrolized polyacrylamide from kaolinite surface. J Colloid Interface Sci 97: 481

    Google Scholar 

  45. El-Amamy MM, Mill Th (1984) Hydrolysis kinetics of organic chemicals on montmorillonite and kaolinite surfaces as related to moisture content. Clays Clay Min 32: 67

    Google Scholar 

  46. Ertem G (1972) Irreversible collapse of montmorillonite. Clays Clay Min 29: 199

    Google Scholar 

  47. Fahn R, Weiss A, Hofmann U (1953) Über die Thixotropie bei Tonen. Ber Dtsch Keram Ges 30: 21

    Google Scholar 

  48. Farmer VC, Mortland MM (1966) An infrared study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite. J Chem Soc A: 344

    Google Scholar 

  49. Favre H, Lagaly G (1991) Organobentonite with quaternary alkylammonium ions. Clay Min 26: 19

    Google Scholar 

  50. Fenoll Hach-Ali P, Weiss A (1969) Estudio de la reacción de caolinita y n-metilformamida. Anales de la Real Sociedad Española de Física y Química, tomo LXV: 769

    Google Scholar 

  51. Fernandez-Gonzales M, Weiss A, Lagaly G (1976) Über das Verhalten nordwest-spanischer Kaoline bei der Bildung von Einlagerungsverbindungen. Keram Z 28: 55

    Google Scholar 

  52. Ferris AP, Jepson WB (1974) The exchange capacities of kaolinite and the preparation of homoionic clays. J Colloid Interface Sci 51: 245

    Google Scholar 

  53. Fitzsimmons RF, Posner AM, Quirk JP (1970) Electron microscopic and kinetic study of the flocculation of calcium montmorillonite. Israel J Chem 8: 301

    Google Scholar 

  54. Frey E, Lagaly G (1979) Selective coagulation in mixed colloidal suspensions. J Colloid Interface Sci 70: 46

    Google Scholar 

  55. Fripiat JJ (1973) Time concepts in surface chemistry. In: Serratosa JM (ed) Proc Intern Clay Conf Madrid, 1972. Div de Ciencias, CSIC Madrid, pp 537–547

    Google Scholar 

  56. Fripiat J J (1977) Mobility of physically adsorbed hydroxylic molecules on surfaces made from oxygen atoms. J Colloid Interface Sci 58: 511

    Google Scholar 

  57. Fripiat JJ, Cases J, Francois M, Letellier M (1982) Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J Colloid Interface Sci 89: 378

    Google Scholar 

  58. Fukushima Y (1984) X-ray diffraction study of aqueous montmorillonite emulsions (richtig: dispersions). Clays Clay Min 32: 320

    Google Scholar 

  59. Gast RG, Klobe WD (1971) Sodium - lithium exchange equilibria on vermiculite at 25° and 50 °C. Clays Clay Min 19: 311

    Google Scholar 

  60. Gast RG (1972) Alkali metal cation exchange on Chambers montmorillonite. Soil Sci Soc Am Proc 36: 14

    Google Scholar 

  61. Ghabru SK, Mermut AR, Arnaud RI (1989) Layer-charge and cation-exchange characteristics of vermiculite (weathered biotite) isolated from an Gray Luvisol in Northeastern Saskatchewan. Clays Clay Min 37: 164

    Google Scholar 

  62. Glaeser R, Mering J (1976) Influence du taux de substitution isomorphique en couche tetraedrique sur les propriétés et l’organisation structurale des smectites dioctaedriques. In: Bailey SW (ed) Proc Internat Clay Conf Mexico 1975. Appl Pub, Wilmette, Illinois, USA, pp 173–183

    Google Scholar 

  63. Graf G, Lagaly G (1980) Interaction of clay minerals with adenosine-5-phosphates. Clays Clay Min 28: 12

    Google Scholar 

  64. Greenland DJ (1963) Adsorption of polyvinylalcohols by montmorillonite. J Colloid Sci 18: 647

    Google Scholar 

  65. Heller L, Yariv S (1970) Anilinium montmorillonites and the formation of ammonium/amine associations. Israel J Chem 8: 391

    Google Scholar 

  66. Herrmann H, Lagaly G (1985) ATP-clay interactions. In: Konta J (ed) Proc European Clay Conf Prague 1983. Karls Universität, Prag, pp 269–277

    Google Scholar 

  67. Hirsch D, Nir S, Banin A (1989) Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Sci Soc Am J 53: 716

    Google Scholar 

  68. Hofmann U, Hausdorf A (1945) Über das Sedimentvolumen und die Quellung von Bentonit. Kolloid Z Z Polymere 110: 1

    Google Scholar 

  69. Hofmann U, Fahn R, Weiss A (1957) Thixotropie bei Kaolinit und innerkristalline Quellung bei Montmorillonit. Kolloid Z Z Polymere 151: 97

    Google Scholar 

  70. Hofmann U (1961) Geheimnisse des Tons. Der Dtsch Keram Ges 38: 201

    Google Scholar 

  71. Hofmann U (1962) Die Tonminerale und die Plasitizität des Tons. Keram Z 14: 14

    Google Scholar 

  72. Hofmann U (1964) Oberflächenladung und Rheologie der Tonminerale. Ber Dtsch Keram Ges 41: 680

    Google Scholar 

  73. Hollander AF, Somasundaran P, Gryte CC (1981) Adsorption of Polyacrylamide and sulfonated Polyacrylamide on Na-kaolinite. In: Tewari PH (ed) Adsorption from aqueous solutions. Plenum Press, New York, London, pp 143–162

    Google Scholar 

  74. Hougardy J, Stone WEE, Fripiat JJ (1976) NMR-study of adsorbed water. I. Molecular orientation and protonic motions in the two-layer hydrate of a Na-vermiculite. J Chem Phys 64: 3840

    Google Scholar 

  75. Hsieh YP (1989) Effects of relative humidity on the basal expansion of Mg-smectite equilibrated with ethylene glycol at low vapor pressure. Clays Clay Min 37: 459

    Google Scholar 

  76. Inoue A, Minato H (1979) Ca-K exchange reaction and interstratification in montmorillonite. Clays Clay Min 27: 393

    Google Scholar 

  77. Jackson ML, Abdel-Kader FH (1978) Kaolinite intercalation procedure for all sizes and types with XRD spacing distinctive from other phyllosilicates. Clays Clay Min 26: 81–87

    Google Scholar 

  78. Jaynes WF, Bigham JM (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li+-saturated smectites. Clays Clay Min 35: 440

    Google Scholar 

  79. Karickhoff SW, Bailey GW (1976) Protonation of organic bases in clay-water systems. Clays Clay Min 24: 170

    Google Scholar 

  80. Keller WD, Haenni RP (1978) Effects of micro-sized mixtures of kaolin minerals on properties of kaolinites. Clays Clay Min 26: 384

    Google Scholar 

  81. Kjellander R, Marcelja S, Quirk JP (1988) Attractive double layer interactions between calcium clay particles. J Colloid Interface Sci 126: 194

    Google Scholar 

  82. Kleíjn WB, Oster JD (1982) A model of clay swelling and tactoid formation. Clays Clay Min 30: 383

    Google Scholar 

  83. Klimentides RE, Mackinnon IDR (1986) High-resolution imaging of ordered mixed-layer clays. Clays Clay Min 34: 155

    Google Scholar 

  84. Kodama H, Ross GJ, Toshimichi J, Robert JW (1974) Effect of layer charge location on potassium exchange and hydration of micas. Am Min 59: 491

    Google Scholar 

  85. Kraehenbuehl F, Stoeckli HF, Brunner F, Kahr G, Müller-Vonmoos M (1987) Study of the water bentonite system by vapour adsorption, immersion calorimetry and X-ray techniques. Clay Min 22: 1

    Google Scholar 

  86. Kulicke WM (1986) Zum Fließverhalten von Stoffen und Stoffgemischen. Hüthig und Wepf, Basel

    Google Scholar 

  87. Lagaly G (1976) Kinkblock- und Gaucheblockstrukturen bimolekularer Filme. Angew Chem 88: 628

    Google Scholar 

  88. Lagaly G, Fernandez-Gonzales M, Weiss A (1976) Problems in layer charge determination of montmorillonites. Clay Min 11: 173

    Google Scholar 

  89. Lagaly G (1979) The “layer-charge” of regular interstratified 2/1 clay minerals. Clays Clay Min 27: 1

    Google Scholar 

  90. Lagaly G (1981) Characterization of clays by organic compounds. Clay Min 16: 1

    Google Scholar 

  91. Lagaly G, Müller-Vonmoos M, Kahr G, Fahn R (1981) Vorgänge bei der Sodaaktivierung von Bentoniten am Beispiel eines Bentonits von Neuseeland. Keram Z 33: 278

    Google Scholar 

  92. Lagaly G (1982) The layer charge heterogeneity in vermiculites. Clays Clay Min 30: 215

    Google Scholar 

  93. Lagaly G (1984) Clay-organic reactions. Phil Trans R Soc London A 311: 315

    Google Scholar 

  94. Lagaly G (1986) Smectitic clays as ionic macromolecules. In: Wilson AD, Prosser HJ (eds) Developments of ionic polymers, vol 2. Elsevier, London, pp 77–140

    Google Scholar 

  95. Lagaly G (1986) Colloids. Ullmann’s Encyclopedia of Industrial Chemistry, Vol A7, pp 341–367

    Google Scholar 

  96. Lagaly G (1987) Water and solvents on surfaces bristling with alkyl chains. In: Kleeberg H (ed) Interactions of water in ionic and nonionic hydrates. Springer, Berlin Heidelberg, pp 229–240

    Google Scholar 

  97. Lagaly G (1989) Principles of flow of kaolin and bentonite dispersions. Appl Clay Sci 4: 105

    Google Scholar 

  98. Lagaly G, Malberg R (1990) Disaggreagation of alkylammonium montmorillonites in organic solvents. Colloids and Surfaces 49: 11

    Google Scholar 

  99. Lagaly G (1991) Erkennung und Identifizierung von Tonmineralen mit organischen Stoffen. In: Tributh H, Lagaly G (Hrsg) Identifizierung und Charakterisierung von Tonmineralen. DTTG, Gießen 1991, S 86–130

    Google Scholar 

  100. Lagaly G (1992) From clay mineral crystals to colloidal clay mineral dispersions. In: Dobias B (ed) Coagulation and flocculation: theory and application. Marcel Dekker, pp 427–494

    Google Scholar 

  101. Lahav N (1990) Preparation of stable suspensions of delaminated kaolinite by combined dimethylsulfoxide-ammonium fluoride treatment. Clays Clay Min 38: 219

    Google Scholar 

  102. Lailach GE, Brindley GW (1969) Specific co-adsorption of purines and pyrimidines by montmorillonite. Clays Clay Min 17: 95

    Google Scholar 

  103. Laird DA, Scott AD, Fenton TL (1989) Evolution of the alkylammonium method for determining layer charge. Clays Clay Min 37: 41

    Google Scholar 

  104. Larsson N, Siffert B (1983) Formation of lysozyme-containing crystals of montmorillonite. J Colloid Interface Sci 93: 424

    Google Scholar 

  105. Laudelout H, van Bladel R, Bolt GH, Page AL (1968) Thermodynamics of heterovalent cation exchange reaction in a montmorillonite clay. Trans Farad Soc 64: 1477

    Google Scholar 

  106. Laura RD, Cloos P (1975) Adsorption of ethylene diamine on montmorillonite saturated with different cations, IV, V. Clays Clay Min 23: 343, 417

    Google Scholar 

  107. Levy R, Francis CW (1975) Interlayer adsorption of polyvinylpyrrolidone on montmorillonite. J Colloid Interface Sci 50: 442

    Google Scholar 

  108. Levy R, Francis CW (1975) A quantitative method for the determination of montmorillonite in soils. Clays Clay Min 23: 85

    Google Scholar 

  109. Lim CH, Jackson ML (1986) Expandable phyllosilicate reactions with lithium on heating. Clays Clay Min 34: 346

    Google Scholar 

  110. Lipsicas M, Straley C, Costanzo PM, Giese RF (1985) Static and dynamic structure of water in hydrated kaolinites. J Colloid Interface Sci 107: 221

    Google Scholar 

  111. Lipsicas M, Raythatha R, Giese RF, Costanzo PM (1986) Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates. Clays Clay Min 34: 635

    Google Scholar 

  112. Lombardi G, Russel JD, Keller WD (1987) Compositional and structural variations in size fractions of a sedimentary and a hydrothermal kaolin. Clays Clay Min 35: 321

    Google Scholar 

  113. Low PF (1987) The clay-water interface. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Intern Clay Conf, Denver 1985. The Clay Minerals Soc, Bloomington, Indiana, pp 247–256

    Google Scholar 

  114. Lubetkin SD, Middleton SR, Ottewill RH (1984) Some properties of clay water dispersions. Phil Trans R Soc Lond A 311: 353

    Google Scholar 

  115. Luca S de, Slaughter M (1985) Existence of multiple kaolinite phases and their relationship to disorder in kaoline minerals. Am Min 70: 149

    Google Scholar 

  116. Luck WAP (1978) Zur Struktur des Wassers und wäßriger Systeme. Progr Colloid Polymer Sci 65: 6

    Google Scholar 

  117. Madsen F (1977) Surface area measurements of clay minerals by glycerol sorption on a thermobalance. Thermochimica Acta 21: 89

    Google Scholar 

  118. Maes A, Cremers A (1977) Charge density effects in ion exchange, part 1 - Heterovalent exchange equilibria. J Chem Soc Farad Trans I, 73: 1807

    Google Scholar 

  119. Maes A, Verheyden D, Cremers A (1985) Formation of highly selective cesium-exchange sites in montmorillonites. Clays Clay Min 33: 251

    Google Scholar 

  120. Malberg R, Dékány I, Lagaly G (1988) Short-chain alkylammonium montmorillonites and alcohols: gas adsorption and immersional wetting. Clay Min 24: 631

    Google Scholar 

  121. Malla PB, Douglas LA (1987) Identification of expanding layer silicates: layer charge vs expansion properties. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Internat Clay Conf Denver, 1985. The Clay Min Soc Bloomington, Indiana, pp 277–283

    Google Scholar 

  122. Mamy J, Gaultier JP (1975) Étude de l’évolution de l’ordre cristalline dans la montmorillonite en relation avec la diminution d’échangeabilité de potassium. Proc Internat Clay Conf Mexiko, 1975. Appl Pub, Wilmette, Illinois, USA, 1976, pp 149–155

    Google Scholar 

  123. Mareks CH, Wachsmuth H, Reichenbach H Graf von (1989) Preparation of vermiculite for HRTEM. Clay Min 24: 23

    Google Scholar 

  124. Martin H, Laudelout H (1963) Thermodynamique de l’échange des cations alcalins dans les argiles. J Chimie Physique: 1086

    Google Scholar 

  125. Martin-Rubi JA, Rausell-Colom JA, Serratosa JM (1974) Infrared adsorption and X-ray diffraction study of butylammonium complexes of phyllosilicates. Clays Clay Min 22: 87

    Google Scholar 

  126. McAtee JL (1963) Organic cation exchange on montmorillonite as observed by ultraviolet analysis. Clays Clay Min 10: 153

    Google Scholar 

  127. McBride MB, Pinnavaia TJ, Mortland MM (1975) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicates (smectite) surfaces. J Phys Chem 79: 2430

    Google Scholar 

  128. McBride MB, Pinnavaia TJ, Mortland MM (1975) Perturbation of structural Fe3+ in smectites by exchange ions. Clays Clay Min 23: 103

    Google Scholar 

  129. McBride M (1979) An interpretation of cation selectivity variations in M+-M+ exchange on clays. Clays Clay Min 27: 417

    Google Scholar 

  130. Mering J, Oberlin A (1976) Electron optical study of smectites. Clays Clay Min 15: 3

    Google Scholar 

  131. Mingelgrin K, Tsvetkov F (1985) Surface condensation of organo-phosphate esters on smectites. Clays Clay Min 33: 62

    Google Scholar 

  132. Moinereau J (1977) Adsorption de composes humiques par une montmorillonite H+, Al3+. Clay Min 12: 75

    Google Scholar 

  133. Mortland MM, Raman KV (1968) Surface acidity of smectites in relation to hydration, exchangeable cation, and structure. Clays Clay Min 16: 393

    Google Scholar 

  134. Moshi AO, Wild A, Greenland DJ (1974) Effect of organic matter on the charge and phosphate adsorption of Kikuyu Red Clay from Kenya. Geoderma 11: 275

    Google Scholar 

  135. Muljadi D, Posner AM, Quirk JP (1966) The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. J Soil Sci 17: 212

    Google Scholar 

  136. Mulla DJ, Low PF (1983) The molar absorptivity of interparticle water in clay-water systems. J Coll Interf Sci 95: 51

    Google Scholar 

  137. Müller-Vonmoos M, Kahr G, Madsen FT (1991) Bestimmung der Zwischenschichtladung von Smectit-Illit-Wechsellagerungen in Kaolin-Bentoniten. In: Tributh H, Lagaly G (Hrsg) Identifizierung und Nachweis der Tonminerale, DTTG, Gießen, S 131–155

    Google Scholar 

  138. Nadeau PH (1985) The physical dimensions of fundamental clay particles. Clay Min 20: 499

    Google Scholar 

  139. Nadeau PH (1987) Clay particle engineering: a potential new technology with diverse applications. Appl Clay Sci 2: 83

    Google Scholar 

  140. Napper DH (1983) Polymeric stabilization of colloidal dispersions. Acad Press, London New York

    Google Scholar 

  141. Narine DR, Guy RD (1981) Interaction of some large organic cations with bentonite in diluted aqueous systems. Clays Clay Min 29: 205

    Google Scholar 

  142. Nir S (1986) Specific and nonspecific cation adsorption to clays: solution concentrations and surface potentials. Soil Sci Soc Am J 50: 52

    Google Scholar 

  143. Nir S, Hirsch D, Navrot J, Banin A (1986) Specific adsorption of lithium, sodium, potassium, and strontium to montmorillonite; observations and predictions. Soil Sci Soc Am J 50: 58

    Google Scholar 

  144. Norrish K, Rausell-Colom JA (1963) Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite. Clays Clay Min 12: 123

    Google Scholar 

  145. O’Brian NR (1971) Fabric of kaolinite and illite floccules. Clays Clay Min 19: 353

    Google Scholar 

  146. Olis AC, Malla PB, Douglas LA (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Min 25: 39

    Google Scholar 

  147. Olness A, Clapp CE (1973) Occurence of collapsed and expanded crystals in montmorillonite-dextran complexes. Clays Clay Min 21: 289

    Google Scholar 

  148. Olphen H van (1968) Modification of the clay surface by pyridine-type compounds. J Colloid Interf Sci 28: 370

    Google Scholar 

  149. Olphen H van (1977) An introduction to clay colloid chemistry. Wiley, New York

    Google Scholar 

  150. Overbeek JThG (1977) Recent developments in the understanding of colloid stability. J Colloid Interf Sci 58: 408

    Google Scholar 

  151. Parfitt RL, Greenland DJ (1970) Adsorption of polysaccharides by montmorillonite. Soil Sci Soc Am Proc 34: 862

    Google Scholar 

  152. Parfitt RL, Greenland DJ (1970) Adsorption of poly(ethylene glycols) on clay minerals. Clay Min 8: 305; 317

    Google Scholar 

  153. Perez-Rodriguez JL, Wüson MJ (1969) Effects of pretreatment on a 14 Å swelling mineral from Gartley, Aberdeenshire. Clay Min 8: 39

    Google Scholar 

  154. Pham Thi Hang, Brindley GW (1970) Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities. Clays Clay Min 18: 203

    Google Scholar 

  155. Pinnavaia TJ, Hall PL, Cady SS, Mortland MM (1974) Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J Phys Chem 78: 994

    Google Scholar 

  156. Plancon A, Giese RF, Snyder R (1988) The Hinckley index for kaolinites. Clay Min 23: 249

    Google Scholar 

  157. Range KJ, Range A, Weiss A (1968) Zur Existenz von Kaolinithydraten. Z Naturforsch 23b: 1144

    Google Scholar 

  158. Range KJ, Range A, Weiss A (1969) Fire-clay type kaolinite or fire-clay mineral? Experimental classification of kaolinite-halloysite minerals. In: Heller L (ed) Proc Internat Clay Conf Tokyo, 1969. Israel Univ Press, Jerusalem, pp 3–13

    Google Scholar 

  159. Rao KPC, Krishna Murti GSR (1987) Influence of noncrystalline material on phosphate adsorption by kaolin and bentonite clays. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Internat Clay Conf, Denver, 1985. The Clay Minerals Soc, Bloomington, Indiana, pp 179–185

    Google Scholar 

  160. Rausell-Colom JA, Salvador PS (1971) Gelification de vermiculite dans des solution d’acide γ-amino butyrique. Clay Min 9: 193

    Google Scholar 

  161. Rausell-Colom JA, Saez-Aunon, Pons CH (1989) Vermiculite gelation: structural and textural evolution. Clay Min 24: 459

    Google Scholar 

  162. Reiehenbach H Graf von (1966) Anomalien des Kationenaustausches bei Vermiculiten. Z Pflanz Bodenk 113: 203

    Google Scholar 

  163. Reichenbach H Graf von, Rich CI (1969) Potassium release from muscovite as influenced by particle size. Clays Clay Min. 17: 23

    Google Scholar 

  164. Reichenbach H Graf von (1973) Exchange equilibria of interlayer cations in different particle size fractions of biotite and phlogopite. In: Serratosa JM (ed) Proc Intern Clay Conf Madrid 1972, Div de Ciencias, CSIC, Madrid, pp 457–466

    Google Scholar 

  165. Reynolds RC (1965) An X-ray study of an ethylene glycol montmorillonite complex. Am Min 50: 990

    Google Scholar 

  166. Roper MM, Marshall KC (1978) Effects of a clay mineral on microbial predation and parasitism of Escherichia coli. Microbial Ecology 4: 279

    Google Scholar 

  167. Ross GJ, Rich CI (1973) Effect of particle thickness on potassium exchange from phlogopite. Clays Clay Min 21: 77

    Google Scholar 

  168. Ruehlicke G, Kohler EE (1981) A simplified procedere for determining layer charge by the n-alkylammonium method. Clay Min 16: 305

    Google Scholar 

  169. Rühlicke G, Niederbudde EA (1985) Determination of layer charge density of expandable 2:1 clay minerals in soils and loess sediments using the alkylammonium method. Clay Min 20: 291

    Google Scholar 

  170. Rupert JP (1973) Electron spin resonance spectra of interlamellar copper(II)-arene complexes on montmorillonite. J Phys Chem 77: 784

    Google Scholar 

  171. Samii AM, Lagaly G (1987) Adsorption of nuclein bases on smectites. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Internat Clay Conf Denver, 1985. The Clay Minerals Soc, Bloomington, Indiana, pp 363–369

    Google Scholar 

  172. Schnitzer M, Kodama H (1972) Reactions between fulvic acid and Cu2+-montmorillonite. Clays Clay Min 20: 359

    Google Scholar 

  173. Schön G, Staudt U, Wendel R (1976) Über den Einfluß von einwertigen Zwischenschichtkationen auf die elektrische Leitfähigkeit von Vermiculiten in verschiedenen Hydrationszuständen. Colloid Polym Sci 254: 1000

    Google Scholar 

  174. Schramm LL, Kwak JCT (1982) Influence of exchangeable cation composition on the size and shape of montmorillonite particles in dilute suspensions. Clays Clay Min 30: 40

    Google Scholar 

  175. Schwertmann U (1962) Die selektive Kationenadsorption der Tonfraktion einiger Böden aus Sedimenten. Z Pflanzenern Bodenk 97: 9

    Google Scholar 

  176. Schwertmann U (1969) Aggregation of aged hydrogen clays. In: Heller L (ed) Proc Internat Clay Conf Tokyo, 1969. Israel University Press, Jerusalem, pp 683–690

    Google Scholar 

  177. Scott AD, Ismail FT, Locaties RR (1973) Changes in interlayer potassium exchangeability induced by heating micas. In: Serratosa JM (ed) Proc Intern Clay Conf Madrid 1972. Div de Ciencias, CSIC, Madrid, pp 467–479

    Google Scholar 

  178. Serratosa JM (1966) Infrared analysis of the orientation of pyridine molecules in clay complexes. Clays Clay Min, Proc 14th Nat Conf, pp 385–391

    Google Scholar 

  179. Shainberg I, Kemper WD (1966) Hydration status of adsorbed ions. Soil Sci Soc Am Proc 30, 707;

    Google Scholar 

  180. Shainberg I, Alperoviteh, Keren R (1987) Charge density and Na-K-Ca exchange on smectites. Clays Clay Min 35: 68

    Google Scholar 

  181. Shawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Min 20: 93

    Google Scholar 

  182. Siffert B, Espinasse P (1980) Adsorption of diacids and sodium polyacrylate onto montmorillonite. Clays Clay Min 28: 381

    Google Scholar 

  183. Slade PG, Telleria MI, Radoslovich EW (1976) The structures of ornithine-vermiculite and 6-aminohexanoic acid-vermiculite. Clays Clay Min 24: 134

    Google Scholar 

  184. Smalley MV, Thomas RK, Braganza LF, Matsuo T (1989) Effect of hydrostatic pressure on the swelling of n-butylammonium vermieulite. Clays Clay Min 37: 474

    Google Scholar 

  185. Sposito G, Prost R (1982) Structure of adsorbed water on smectites. Chem Rev 82: 553

    Google Scholar 

  186. Stanjek H, Friedrich R (1986) The determination of layer charge by curve-fitting of Lorentz- and polarization corrrected X-ray diagrams. Clay Min 21: 183

    Google Scholar 

  187. Stul MS, Mortier WJ (1974) The heterogeneity of the charge density in montmorillonites. Clays Clay Min 22: 391

    Google Scholar 

  188. Stul MS, van Leemput L, Leplat L, Uytterhoeven JB (1983) The adsorption of organic vapors on alkylammonium smectites, the influence of mineral charge density and monofunctional ammonium cation type. J Colloid Interf Sci 94: 154

    Google Scholar 

  189. Stutz E, Kahr G, Défago G (1989) Clays involved in suppression of tobacco black root rot by a strain of Pseudomonas fluorescens. Soil Biol Biochem 21: 361

    Google Scholar 

  190. Stutzmann Th, Siffert B (1970) Contribution to the adsorption mechanism of acetamide and Polyacrylamide onto clays. Clays Clay Min 25: 392

    Google Scholar 

  191. Suquet H, de la Calle C, Pézérat H (1975) Swelling and structural organization of saponite. Clays Clay Min 23: 1

    Google Scholar 

  192. Suquet H, Jiyama JT, Kodama H, Pézérat H (1977) Synthesis and swelling properties of saponites with increasing layer charge. Clays Clay Min 25: 231

    Google Scholar 

  193. Suquet H, Pézérat H (1987) Parameters influencing layer stacking types in saponite and vermiculite: a review. Clays Clay Min 35: 353

    Google Scholar 

  194. Szántó F, Gilde M (1973) Rheological properties and thixotropic behaviour of kaolinite suspensions. Acta Universitas Szegediensis, Acta Physica et Chimica, Vol. XIX, 3: 291

    Google Scholar 

  195. Talibudeen O (1954) Complex formation between montmorillonoid clays and amino-acids and protein. Trans Farad Soc 51: 582

    Google Scholar 

  196. Tazaki K, Kimura S, Yoshima T, Akai J, Fyfe WS (1989) Clay organic complexes as a cementing agent in the Arahama sand dune, Japan. Clays Clay Min 37: 219

    Google Scholar 

  197. Tazaki K, Fyfe WS, Fukushima K, Fukani A (1990) Wet-to dry transition of smectite as revealed by humidity-controlled electron microscopy. Clays Clay Min 38: 327

    Google Scholar 

  198. Teileria MI, Slade PG, Radoslovich EW (1977) X-ray study of the interlayer region of a barium-vermiculite. Clays Clay Min 25: 119

    Google Scholar 

  199. Theng BKG (1974) The chemistry of clay-organic reactions. Hilger, London

    Google Scholar 

  200. Theng BKG (1979) Formation and properties of clay-polymer complexes. Elsevier, Amsterdam

    Google Scholar 

  201. Thompson TD, Brindley GW (1969) Adsorption of pyrimidines, purines, and nucleotides by Na-, Mg- and Cu-illite. Am Min 54: 858

    Google Scholar 

  202. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33: 141

    Google Scholar 

  203. Tombácz E, Balász J, Lakatos J, Szántó F (1989) Influence of the exchangeable cations on stability and rheological properties of montmorillonite suspensions. Coll Polym Sci 267: 1016

    Google Scholar 

  204. Tombácz E, Gilde M, Abraham I, Szántó F (1990) Effect of sodium chloride on interactions of fulvic acid and fulvate with montmorillonite. Appi Clay Sci 5: 101

    Google Scholar 

  205. Touillaux R, Salvador P, Vandermeersche C, Fripiat JJ (1968) Study of water layers adsorbed on Na- and Ca-montmorillonite by the pulsed nuclear magnetic resonance technique. Israel J Chem 6: 337

    Google Scholar 

  206. Tributh H, Lagaly G (1986) Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. GIT Fachz Lab 30: 524; 771

    Google Scholar 

  207. Ueda T, Harada S (1968) Adsorption of cationic polysulfone on bentonite. J Appi Polym Sci 12: 2395

    Google Scholar 

  208. Vali H, Bachmann L (1988) Ultrastructure and flow behaviour of colloidal clay dispersions. J Colloid Interf Sci 126: 278

    Google Scholar 

  209. Vansant EF, Uytterhoeven JB (1972) Thermodynamics of the exchange of n-alkylammonium ions on Na-montmorillonite. Clays Clay Min 20: 47

    Google Scholar 

  210. Vogt K, Köster HM (1978) Zur Mineralogie, Kristallchemie und Geochemie einiger Montmorillonite aus Bentoniten. Clay Min 13: 25

    Google Scholar 

  211. Wada K (1961) Lattice expansion of kaoline minerals by treatment with potassium acetate. Am Min 46: 78

    Google Scholar 

  212. Weiss A, Hofmann U (1951) Batavit. Z Naturforsch 6b: 405

    Google Scholar 

  213. Weiss A, Mehler A, Koch G, Hofmann U (1956) Über das Anionenaustauschvermögen der Tonminerale. Z anorg allgem Chem 284: 247

    Google Scholar 

  214. Weiss A (1958) Der Kationenaustausch bei den Mineralen der Glimmer-, Vermiculit- und Montmorillonitgruppe. Z anorg allgem Chem 297: 257

    Google Scholar 

  215. Weiss A (1958) Über äquimolaren Kationenaustausch bei niedrig geladenen Ionenaustauschern. Kolloid Z 158: 22

    Google Scholar 

  216. Weiss A, Frank R (1961) Über den Bau der Gerüste in thixotropen Gelen. Z Naturforsch 16b: 141

    Google Scholar 

  217. Weiss A (1962) Neuere Untersuchungen über die Struktur thixotroper Gele. Rheologica Acta 2: 292

    Google Scholar 

  218. Weiss A (1963) Ein Geheimnis des chinesischen Porzellans. Angew Chem 75: 736

    Google Scholar 

  219. Weiss A (1963) Organische Derivate von glimmerartigen Schichtsilicaten. Angew Chem 75: 113

    Google Scholar 

  220. Weiss A (1963b) Mica-type layer silicates with alkylammonium ions. Clays Clay Min 10: 191

    Google Scholar 

  221. Weiss A, Russow J (1963) Über die Lagen der austauschfähigen Kationen bei Kaolinit. In: Rosenqvist IT, Graff-Petersen P (eds) Proc Internat Clay Conf Stockholm, 1963 vol 1. Pergamon Press, London, pp 203 - 213

    Google Scholar 

  222. Weiss A, Häbich A, Weiss A (1964) Einige Eigenschaften der 1. bis 4. Wasserschicht in quellungsfähigen Schichtsilicaten. Ber Dtsch Keram Ges 41: 687

    Google Scholar 

  223. Weiss A, Thielepape W, Orth H (1967) Neue Kaolinit-Einlagerungsverbindungen. Proc Internat Clay Conf Jerusalem, 1966, vol 1. Israel Univ Press, Jerusalem, pp 277–293

    Google Scholar 

  224. Weiss A, Becker HO, Orth H, Mai G, Lechner H, Range KJ (1970) Particle size effects and reaction mechanism of the intercalation into kaolinite. In: Heller L (ed) Proc Internat Clay Conf Tokyo, 1969, vol II. Israel Univ Press, Jerusalem, pp 180–186

    Google Scholar 

  225. Weiss A, Orth H, Ruthard R (1970) Comparison of intercalation compounds of kaolinite and titanium disulfide with acid amides. In: Heller L (ed) Proc Internat Clay Conf Tokyo, 1969, vol II. Israel Univ Press, Jerusalem, pp 194–195

    Google Scholar 

  226. Weiss A, Orth H (1973) Zur Kenntnis der Intercalationsverbindungen von Kaolinit, Nakrit, Dickit und Halloysit. Z Naturforsch 28b: 252

    Google Scholar 

  227. Weiss A (1989) About sealing of waste disposals by clays with special consideration of organic compounds in percolating water. Appl Clay Sci 4: 193

    Google Scholar 

  228. Wendelbo R, Rosenqvist IT (1987) Effects of anion adsorption on mechanical properties of clay-water systems. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proc Internat Clay Conf Denver, 1985. The Clay Minerals Soc, Bloomington, Indiana, pp 422–426

    Google Scholar 

  229. Yariv S, Heller L (1970) Sorption of cyclohexylamine by montmorillonites. Israel J Chem 8: 935

    Google Scholar 

  230. Yariv S, Nasser A, Bar-on P (1990) Metachromasy in clay minerals. J Chem Soc Farad Trans 86: 1593

    Google Scholar 

  231. Young RN, Ohtsubo M (1987) Interparticle action and rheology of kaolinite-amorphous iron hydroxide (ferrihydrite) complexes. Appl Clay Sci 2: 63

    Google Scholar 

  232. Zhang ZZ, Low PF (1989) Relation between the heat of immersion and the initial water content of Li-, Na-, and K-montmorillonite. J Colloid Interf Sci 133: 461

    Google Scholar 

  233. Zhao X, Urano K, Ogasawara S (1989) Adsorption of polyethylene glycol from aqueous solution on montmorillonite clays. Colloid Polymer Sci 267: 899

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt

About this chapter

Cite this chapter

Lagaly, G. (1993). Reaktionen der Tonminerale. In: Jasmund, K., Lagaly, G. (eds) Tonminerale und Tone. Steinkopff. https://doi.org/10.1007/978-3-642-72488-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-72488-6_3

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0923-8

  • Online ISBN: 978-3-642-72488-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics