Skip to main content

Age-Related Physiologic and Molecular Changes in the Thymus

  • Conference paper
Blood Cells, Rheology, and Aging
  • 135 Accesses

Abstract

About 25 years ago we found that the ability to mount a T cell-dependent primary antibody response to sheep red blood cell stimulation decreases with age in mice [1]. Shortly thereafter, we demonstrated that this decrease is due primarily to changes in the tissues making up the immune system and secondarily to changes in the systemic milieu [2]. Since then, studies from various laboratories have established that other T cell-dependent immunologic activities in various species are also vulnerable to aging [3]. In addition, the altered activities have been associated with a decrease in the number of T cells, with changes in the intrinsic properties of T cells, and with an imbalance in the enhancing and suppressive activities of regulator T cells [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Makinodan T, Peterson WJ (1962) Relative antibody-forming capacity of spleen cells as a function of age. Proc Natl Acad Sci USA 48:234–238

    Article  PubMed  CAS  Google Scholar 

  2. Makinodan T, Peterson WJ (1964) Growth and senescence of the primary antibody-forming potential of the spleen. J Immunol 93:886–896

    PubMed  CAS  Google Scholar 

  3. Cinader B (1980) The immunobiology of aging. In: Yamamura Y, Tada T (eds) Progress in immunology V. Academic Press, Tokyo, Japan, pp 1519–1538

    Google Scholar 

  4. Doria G, Frasca D, Adorini L (1983) Immunoregulation of antibody response in aging. In: Yamamura Y, Tada T (eds) Progress in immunology V. Academic Press, Tokyo, Japan, pp 1549–1561

    Google Scholar 

  5. Pyke KW, Bach JF (1979) The in vitro migration of murine fetal liver cells to thymic rudiments. Eur J Immunol 9:317–323

    Article  PubMed  CAS  Google Scholar 

  6. Zinkernagel RM, Doherty PC (1979) MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol 27:51–177

    Article  PubMed  CAS  Google Scholar 

  7. Stutman O (1978) Intrathymic and extrathymic T cell maturation. Immunol Rev 42:138–184

    Article  PubMed  CAS  Google Scholar 

  8. Hall NR, Goldstein AL (1981) Neurotransmitters and the immune system. In: Ader R (ed) Psychoneuroimmunology. Academic Press, New York, pp 521–543

    Google Scholar 

  9. Trainin N, Small M, Zipori T, Umiel T, Kook AI, Rotter V (1975) Characteristics of THF, a thymic hormone. In: Van Bekkum DW (ed) The biological activity of thymic hormones. Kooyker Scientific Publications, Rotterdam, pp 261–264

    Google Scholar 

  10. Schlesinger DH, Goldstein G (1975) The amino acid sequence of thymopoietin II. Cell 5:361–365

    Article  PubMed  CAS  Google Scholar 

  11. Goldstein AL, Low TLK, McAdoo M, McClure J, Thurman GB, Rossio J, Lai C-Y, Chang D, Wang S-S, Harvey C, Ramel AH, Meienhofer J (1977) Thymosin α1: isolation and sequence analysis of an immunologically active thymic polypeptide. Proc Natl Acad Sci USA 74:725–729

    Article  PubMed  CAS  Google Scholar 

  12. Dardenne M, Pleau JM, Man NK, Bach JF (1977) Structural study of circulating thymic factor, a peptide isolated from pig serum. I. Isolation and purification. J Biol Chem 252:8040–8044

    PubMed  CAS  Google Scholar 

  13. Hirokawa K, McClure JE, Goldstein AL (1982) Age-related changes in localization of thymosin in the human thymus. Thymus 4:19–29

    PubMed  CAS  Google Scholar 

  14. Haynes BF, Robert-Guroff M, Metzgar RS, Franchini G, Kalyanaraman VS, Palker TJ, Gallo RC (1983) Monoclonal antibody against human T cell leukemia virus p19 defines a human thymic epithelial antigen acquired during ontogeny. J Exp Med 157:907–920

    Article  PubMed  CAS  Google Scholar 

  15. Boyd E (1932) The weight of the thymus gland in health and in disease. Am J Dis Child 43:1162–1214

    Google Scholar 

  16. Santisteban GA (1960) The growth and involution of lymphatic tissue and its interrelationships to aging and to the growth of the adrenal glands and sex organs in CBA mice. Anat Rec 136:117–126

    Article  PubMed  CAS  Google Scholar 

  17. Kay MMB (1984) Immunological aspects of aging: early changes in thymic activity. Mech Ageing Dev 28:193–218

    Article  PubMed  CAS  Google Scholar 

  18. Makinodan T (1978) The thymus in aging. In: Greenblatt RB (ed) Geriatric endocrinology. Raven Press, New York, pp 217–230

    Google Scholar 

  19. Metcalf D (1965) Delayed effect of thymectomy in adult life on immunological competence. Nature 208:1336

    Article  PubMed  CAS  Google Scholar 

  20. Taylor RB (1965) Decay of immunological responsiveness after thymectomy in adult life. Nature 208:1334–1335

    Article  PubMed  CAS  Google Scholar 

  21. Teague PO, Yunis EJ, Rodey G et al. (1970) Autoimmune phenomena and renal disease in mice. Role of thymectomy aging, and involution of immunologic capacity. Lab Invest 22:121–130

    PubMed  CAS  Google Scholar 

  22. Jeejeebhoy HF (1971) Decreased longevity of mice following thymectomy in adult life. Transplantation 12:525–526

    Article  PubMed  CAS  Google Scholar 

  23. Hirokawa K, Makinodan T (1975) Thymic involution: effect on T cell differentiation. J Immunol 114:1659–1664

    PubMed  CAS  Google Scholar 

  24. Hirokawa K, Sato K, Makinodan T (1982) Influence of age of thymic grafts on the differentiation of T cells in nude mice. Clin Immunol Immunopathol 24:251–262

    Article  PubMed  CAS  Google Scholar 

  25. Bach M-A, Beaurain G (1979) Respective influence of extrinsic and intrinsic factors on the age-related decrease of thymic secretion. J Immunol 122:2505–2507

    PubMed  CAS  Google Scholar 

  26. Sato K, Chang M-P, Makinodan T (1984) Influence of age on the ability of thymic adherent cells to produce factors in vitro which modulate immune responses of thymocytes. Cell Immunol 87:473–484

    Article  PubMed  CAS  Google Scholar 

  27. Kinohara N, Chang M-P, Makinodan T (1985) Influence of age on the production of thymic modulating factors in vitro. Age 8:139

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Makinodan, T., Kinohara, N., Chang, MP. (1988). Age-Related Physiologic and Molecular Changes in the Thymus. In: Platt, D. (eds) Blood Cells, Rheology, and Aging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71790-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71790-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71792-5

  • Online ISBN: 978-3-642-71790-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics