Skip to main content

Convection with a First-Order Chemically Reactive Passive Scalar

  • Conference paper
Turbulent Shear Flows 5

Abstract

Convection between horizontal, stress-free, perfectly conducting plates is examined in the turbulent regime for air. Results are presented for an additional scalar undergoing first order decay. We discuss qualitative aspects of the flow in terms of spectral and three-dimensional isosurface maps of the velocity and scalar fields. The horizontal mean profiles of scalar gradients and fluxes agree rather well with simple mixing-length concepts. Further, the mean profiles for a range of the destruction-rate parameter are shown to be nearly completely characterized by the boundary fluxes. Finally, we use the present numerical data as a basis for exploring a generalization of eddy-diffusion concepts that incorporates necessary non-local effects.

The National Center for Atmospheric Research is sponsored by the National Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

C(x,y,z,t)):

Concentration of decaying scalar

〈C〉):

Horizontal (or ensemble) average of C = 〈C〉 (z, t)

[C]):

Volume average (over periodic domain) of C

D):

Depth of convective layer

E υ ):

Kinetic energy spectrum

g):

Acceleration of gravity

ĝ):

Unit vector along g

k):

Wave number vector

k0):

Lowest k in numerical simulation

Nu):

Heat flux through lower plate in units kΔT/D

Nc(0)):

Scalar flux through lower boundary; units are same as for Nu

Nc(1)):

Scalar flux through top plate; units are same as for Nu

p):

Pressure field

r):

Position vector

Ra):

Rayleigh number gα(T(0) — T(1))/(κνD 3 )

Rc):

Critical Ra for slip boundaries 27 π4/4

Rλ):

Taylor microscale Reynolds number = 〈w 2〉/〈(∂w/∂z)2½ν

T(x, y, z, t)):

Temperature

〈T〉):

Horizontal (or ensemble average) of T= 〈T〉 (z, t)

T(0)):

Lower plate temperature

T(1)):

Top plate temperature

u (x, y, z, t)):

Velocity field (x, y, z)

u(x, y, z, t)):

x-component of velocity field

v(x, y, z, t)):

y-component of velocity field

w(x,y,z,t)):

z-component of velocity field

α):

Thermal expansivity

β):

Horizontal average of — ∂T/z

β):

C Horizontal average of — ∂C/z

γ):

Ratio of diffusivities for C and T, respectively

ΔT):

Temperature excess of lower plate over upper plate

Z):

Reacting scalar variance spectrum

ζ):

Fluctuation of C from its horizontal average

ε):

Fractional destruction rate of C in units of the thermal diffusion time

κ):

Thermometric diffusivity

κ c ):

Diffusivity for scalar C

ν):

Kinematic viscosity

φ 1):

Toroidal velocity variance; see (6 a)

Sw):

Velocity derivative skewness [(∂w/∂z)3]/[(∂w/∂z)2]3/2

ST,C):

Scalar mixed skewness [(∂A/z)2 (∂w/z)]/[(∂A/z)2] [(∂w/∂z)2]½, A = (C, T)

(x, y, z)):

Cartesian components of r

t):

Time

φ 2):

Poloidal velocity variance; see (6 b)

σ):

Prandtl number (ν/ κ)

θ):

Fluctuation of T from its horizontal average

Θ):

Temperature variance spectrum

ω):

Vorticity ∇ × u

References

  1. Lipps, F. B. (1976): Numerical simulation of three-dimensional Bénard convection in air. J. Fluid Mech. 75, 113–148

    Article  ADS  Google Scholar 

  2. Curry, J. H., Herring, J. R., Orszag, S. Z., Loncaric, J. (1984): Order and disorder in two- and three-dimensional turbulence. J. Fluid Mech. 147, 1–38

    Article  ADS  MATH  Google Scholar 

  3. Wyngaard, J. C., Brost, R. A. (1984): Top-down and bottom-up diffusion of a scalar in the convective boundary layer. J. Atmos. Sci. 41, 102–112

    Article  ADS  Google Scholar 

  4. Kraichnan, R. H. (1962): Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 1274–1389

    Google Scholar 

  5. Fiedler, B. E. (1984): An integral closure model for the vertical turbulent flux of a scalar in a mixed layer. J. Atmos. Sci. 41, 674–680

    Article  ADS  Google Scholar 

  6. Zippelius, A., Siggia, E. D. (1982): Disappearance of stable convection between free-slip boundaries. Phys. Rev. A26, 1788–1790

    ADS  Google Scholar 

  7. Herring, J. R., Jackson, S. (1984): “Thermal Convection: Numerical Experiments near the Onset to Turbulence and the Statistical Theory of Turbulence,” in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (Elsevier, Amsterdam) 111–116

    Google Scholar 

  8. Priestley, C. H. B. (1959): Turbulent Transfer in the Lower Atmosphere (Chicago University Press, Chicago)

    Google Scholar 

  9. Corrsin, S. (1961): Reactant concentration spectrum in turbulent mixing with a first-order reaction. J. Fluid Mech. 11/3, 407–416

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P., Larcheveque, M. (1982): A comparative assessment of spectral closures as applied to passive scalar diffusion. J. Fluid Mech. 42, 411–437

    Article  ADS  Google Scholar 

  11. Moore, D. R., Weiss, N. O. (1972): Two dimensional Rayleigh-Bénard convection. J. Fluid Mech. 58, 289–312

    Article  ADS  Google Scholar 

  12. Herring, J. R. (1963): Investigation of problems in thermal convection. J. Atmos. Sci. 20, 325–338

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herring, J.R., Wyngaard, J.C. (1987). Convection with a First-Order Chemically Reactive Passive Scalar. In: Durst, F., Launder, B.E., Lumley, J.L., Schmidt, F.W., Whitelaw, J.H. (eds) Turbulent Shear Flows 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71435-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71435-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71437-5

  • Online ISBN: 978-3-642-71435-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics