Skip to main content

The Cell Envelope of Gram-Negative Bacteria: New Aspects of Its Function in Transport and Chemotaxis

  • Conference paper

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 129))

Abstract

The appearance of protein synthesis controlled by nucleic acids was one of the crucial events in prebiotic evolution. Such systems, able to perform metabolism and replication of macromolecules, existed long before the first cells. We sometimes overlook the evolutionary significance of the inception of membranes. The evolution of nucleic acids coding for the primitive enzymes was extremely slow in prebiotic times before development of membranes. If a variant of nucleic acid (RNA) arose that made a superior type of enzyme, the new enzyme could not selectively contribute to the replication of the new RNA in its competition with the neighboring old RNA copies. Sequestering of macro-molecules within a cell envelope greatly accelerated evolution because it linked selective propagation of this new, advantageous RNA much more tightly to the function of the superior gene product (Eigen et al. 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam G, Delbrück M (1968) Reduction of dimensionality in biological diffusion processes. In: Davidson N, Reich A (eds) Structural chemistry and molecular biology. Freeman, San Francisco, pp 198–215

    Google Scholar 

  • Adler J (1973) A method for measuring Chemotaxis and use of the method to determine optimum conditions for Chemotaxis by Escherichia coli. J Gen Microbiol 74:77–91

    PubMed  CAS  Google Scholar 

  • Adler J, Epstein W (1974) Phosphotransferase system enzymes as chemoreceptors for certain sugars in Escherichia coli Chemotaxis. Proc Natl Acad Sci USA 71:2895–2899

    PubMed  CAS  Google Scholar 

  • Agabian N, Unger B (1978) Caulobacter crescentus cell envelope: Effect of growth conditions on murein and outer membrane protein composition. J Bacteriol 133:987–994

    PubMed  CAS  Google Scholar 

  • Ahlem C, Huisman W, Neslund G, Dahms AS (1982) Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K12. J Biol Chem 257:2926–2931

    PubMed  CAS  Google Scholar 

  • Akiyama Y, Ito K (1985) The SecY membrane component of the bacterial protein export machinery: analysis by new electrophoretic methods. EMBO J 4:3351–3356

    PubMed  CAS  Google Scholar 

  • Aksamit R, Koshland DE Jr (1972) A ribose binding protein of Salmonella typhimurium. Biochem Biophys Res Commun 48:1348–1353

    PubMed  CAS  Google Scholar 

  • Alber T, Fahnestock M, Mowbray S, Petsko G (1981) Preliminary X-ray data for the galactose-binding protein from Salmonella typhimurium. J Mol Biol 147:471–474

    PubMed  CAS  Google Scholar 

  • Ames FL G (1984) The histidine transport system of Salmonella typhimurium. Microbiology 17A:13–16

    Google Scholar 

  • Ames FL G (1986) Bacterial periplasmic transport systems: structure, mechanism, and evolution. (in press)

    Google Scholar 

  • Ames FL G, Nikaido H (1978) Identification of a membrane protein as a histidine transport component in Salmonella typhimurium. Proc Natl Acad Sci USA 75:5447–5451

    PubMed  CAS  Google Scholar 

  • Ames FL G, Spudich EN (1976) Protein-protein interaction in transport: Periplasmic histidine-binding protein J interacts with P protein. Proc Natl Acad Sci USA 73:1877–1881

    PubMed  CAS  Google Scholar 

  • Ananthaswany HN (1977) Release of periplasmic enzymes from Escherichia coli by penicillin-ethylenediaminetetraacetate treatment. J Bacteriol 131:710–712

    Google Scholar 

  • Antonov VK, Alexandrov SL, Vorotyntseva TJ (1976) Reversible association as a possible regulatory mechanism for controlling the activity of the non-specific leucine-binding protein from Escherichia coli. Adv Enzyme Regul 14:269–278

    PubMed  CAS  Google Scholar 

  • Argast M, Boos W (1979) Purification and properties of the sn-glycerol-3-phosphate-binding protein of Escherichia coli. J Biol Chem 254:10931–10935

    PubMed  CAS  Google Scholar 

  • Barash H, Halpern YS (1971) Glutamate-binding protein and its relation to glutamate transport in Escherichia coli K-12. Biochem Biophys Res Commun 45:681–688

    PubMed  CAS  Google Scholar 

  • Bauer K, Benz R, Brass JM, Boos W (1985) Salmonella typhimurium contains an anion selective outer membrane porin induced by phosphate starvation. J Bacteriol 161:813–816

    PubMed  CAS  Google Scholar 

  • Bavoil P, Nikaido H (1981) Physical interaction between the phage lambda receptor protein and the carrier-immobilized maltose-binding protein of Escherichia coli. J Biol Chem 256:11385–11388

    PubMed  CAS  Google Scholar 

  • Bavoil P, Nikaido H, von Meyenburg K (1977) Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet 158:23–33

    PubMed  CAS  Google Scholar 

  • Bavoil P, Wandersman C, Schwartz M, Nikaido H (1983) A mutant form of maltose-binding protein of Escherichia coli deficient in its interaction with the bacteriophage lamda receptor protein. J Bacteriol 155:919–921

    PubMed  CAS  Google Scholar 

  • Bayer ME (1979) The fusion sites between outer membrane and cytoplasmic membrane of bacteria: their role in membrane assembly and virus infection. In: Inouye M (ed) Bacterial outer membranes. Wiley, New York, pp 167–202

    Google Scholar 

  • Bédouelle H, Bassford PJ Jr, Fowler AV, Zabin I, Beckwith J, Hofnung M (1980) Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Nature 285:78–81

    PubMed  Google Scholar 

  • Bédouelle H, Charbit A, Clement JM, Dassa E, Gilson E, Saurin W, Hofnung M (1984) The malB region in Escherichia coli K12: Gene structure and expression. Microbiology 17A:29–32

    Google Scholar 

  • Benson SA, Decloux A (1985) Isolation and characterization of outer membrane permeability mutants in Escherichia coli K-12. J Bacteriol 161:361–367

    PubMed  CAS  Google Scholar 

  • Benson SA, Bremer E, Silhavy TJ (1984) Intragenic regions required for LamB export. Proc Natl Acad Sci USA 81:3830–3834

    PubMed  CAS  Google Scholar 

  • Benson SA, Hall MN, Silhavy TJ (1985) Genetic analysis of protein export in Escherichia coli K-12. Ann Rev Biochem 54:101–134

    PubMed  CAS  Google Scholar 

  • Benz R (1985) Porin from bacterial and mitochondrial outer membranes. CRC Critical Reviews in Biochemistry 19:145–190

    PubMed  CAS  Google Scholar 

  • Benz R, Janko K, Boos W, Läuger P (1978) Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim Biophys Acta 511:305–319

    PubMed  CAS  Google Scholar 

  • Benz R, Darveau RP, Hancock REW (1984) Outer membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid-bilayer membranes. Eur J Biochem 140:319–324

    PubMed  CAS  Google Scholar 

  • Benz R, Schmid A, Hancock REW (1985) Ion selectivity of Gram-negative bacterial porin. J Bacteriol 162:722–727

    PubMed  CAS  Google Scholar 

  • Benz R, Schmid A, Nakae T, Vos-Scheperkeuter GH (1986) Pore formation by LamB of Escherichia coli in lipid bilayer membranes. J Bacteriol 165:978–986

    PubMed  CAS  Google Scholar 

  • Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382

    PubMed  CAS  Google Scholar 

  • Berg HC, Tedesco PM (1975) Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci USA 72:3235–3239

    PubMed  CAS  Google Scholar 

  • Berger EA (1973) Different mechanisms of energy coupling for the active transport of proline and glutamine in E. coli. Proc Natl Acad Sci USA 70:1514–1518

    PubMed  CAS  Google Scholar 

  • Berger EA, Heppel LA (1972) A binding protein involved in the transport of cystine and diaminopimelic acid in Escherichia coli. J Biol Chem 247:7684–7694

    PubMed  CAS  Google Scholar 

  • Berger EA, Heppel LA (1974) Different mechanisms of energy coupling for the shock-sensitive and shock-resistent amino acid permeases of Escherichia coli. J Biol Chem 249:7747–7755

    PubMed  CAS  Google Scholar 

  • Bergmans HEN, van Die JM, Hoekstra WPM (1981) Transformation in Escherichia coli: stages in the process. J Bacteriol 146:564–570

    PubMed  CAS  Google Scholar 

  • Beveridge TJ (1981) Ultrastructure chemistry and function of the bacterial wall. Int Rev Cytol 72:229–317

    PubMed  CAS  Google Scholar 

  • Black RA, Hobson AC, Adler J (1980) Involvement of cyclic GMP in intracellular signaling in the chemotactic response of Escherichia coli. Proc Natl Acad Sci USA 77:3879–3883

    PubMed  CAS  Google Scholar 

  • Blazey DL, Burns RO (1982) Transcriptional activity of the transposable element Tn 10 in the Salmonella ilv GEDA operon. Proc Natl Acad Sci USA 79:5011–5015

    PubMed  CAS  Google Scholar 

  • Bollinger J, Park C, Harajama S, Hazelbauer GL (1984) Structure of the Trg protein: Homologies with and differences from other sensory transducers of Escherichia coli. Proc Natl Acad Sci USA 81:3287–3291

    PubMed  CAS  Google Scholar 

  • Boos W (1972) Structurally defective galactose-binding protein isolated from a mutant negative in the β-methylgalactoside transport system of Escherichia coli. J Biol Chem 247:5414–5424

    PubMed  CAS  Google Scholar 

  • Boos W, Gordon AS, Hall RE, Price HD (1972) Transport properties of the galactose-binding protein of Escherichia coli. J Biol Chem 247:917–924

    PubMed  CAS  Google Scholar 

  • Boyd A, Krikos A, Simon M (1981) Sensory transducers of Escherichia coli are encoded by homologous genes. Cell 26:333–343

    PubMed  CAS  Google Scholar 

  • Brass JM (1986) Ca2+-induced permeabilization of the outer membrane: A method for reconstitution of binding protein mediated transport systems in Escherichia coli and Salmonella typhimurium. Meth Enzymol 125:289–302

    PubMed  CAS  Google Scholar 

  • Brass JM, Manson MD (1984) Reconstitution of maltose Chemotaxis in Escherichia coli by addition of maltose-binding protein to calcium-treated cells of mal-regulon mutants. J Bacteriol 157:881–890

    PubMed  CAS  Google Scholar 

  • Brass JM, Boos W, Hengge R (1981) Reconstitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane. J Bacteriol 146:10–17

    PubMed  CAS  Google Scholar 

  • Brass JM, Ehmann U, Bukau B (1983) Reconstitution of maltose transport in Escherichia coli: Conditions affecting import of maltose-binding protein into the periplasm of calcium-treated cells. J Bacteriol 155:97–106

    PubMed  CAS  Google Scholar 

  • Brass JM, Manson MD, Larson TJ (1984) Transposon Tn 10 dependent expression of the lamB gene in Escherichia coli. J Bacteriol 159:93–99

    PubMed  CAS  Google Scholar 

  • Brass JM, Bauer K, Ehmann U, Boos W (1985) Maltose-binding protein does not modulate the activity of maltoporin receptor as general porin in Escherichia coli. J Bacteriol 161:720–726

    PubMed  CAS  Google Scholar 

  • Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, Garland PB (1986) Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 165:787–794

    PubMed  CAS  Google Scholar 

  • Braun V (1975) Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim Biophys Acta 415:335–377

    PubMed  CAS  Google Scholar 

  • Braun V (1981) Escherichia coli cells containing the plasmid ColV produce the iron ionophore aerobactin. FEMS Microbiol Lett 11:225–228

    CAS  Google Scholar 

  • Braun V, Hantke K (1981) In: Gosh BK (ed) Organization of prokaryotic cell membranes, Vol II Bacterial cell surface receptors. CRC Press, Boca Raton, pp 1–73

    Google Scholar 

  • Braun V, Rehn K (1969) Chemical characterization spatial distribution and function of a lipoprotein (murein-lipoprotein) of the Escherichia coli cell wall. The specific effect of trypsin on the membrane structure. Eur J Biochem 10:426–438

    PubMed  CAS  Google Scholar 

  • Braun V, Rotering H, Ohms JP, Hagenmeier H (1976) Conformational studies on murein lipoprotein from outer membrane of Escherichia coli. Eur J Biochem 70:601–610

    PubMed  CAS  Google Scholar 

  • Brey RN, Rosen BP (1979) Properties of Escherichia coli mutants altered in calcium/proton antiport activity. J Bacteriol 139:824–834

    PubMed  CAS  Google Scholar 

  • Brown DA, Berg HC (1974) Temporal stimulation of Chemotaxis in Escherichia coli. Proc Natl Acad Sci USA 71:1388–1392

    PubMed  CAS  Google Scholar 

  • Bukau B (1986) Ca2+-mediated reconstitution of maltose transport and osmoregulation of maltose gene expression in Escherichia coli. Thesis University of Konstanz

    Google Scholar 

  • Bukau B, Brass JM, Boos W (1985) Ca2+-induced permeabilization of the outer membrane of Escherichia coli: Comparison of transformation and reconstitution of binding-protein dependent transport. J Bacteriol 163:61–68

    PubMed  CAS  Google Scholar 

  • Bukau B, Ehrmann M, Boos W (1986) Osmoregulation of the maltose regulon in Escherichia coli. J Bacteriol 166:706–712

    PubMed  Google Scholar 

  • Burman GL, Reichler J, Park JT (1983) Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase activities. J Bacteriol 156:386–392

    PubMed  CAS  Google Scholar 

  • Caffrey M, Feigenson GW (1984) Influence of metal ions on the phase properties of phosphatidic acid in combination with natural and synthetic phosphatidylcholines: an X-ray diffraction study using synchroton radiation. Biochemistry 23:323–331

    PubMed  CAS  Google Scholar 

  • Cerny G, Teuber M (1971) Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by polymyxin B. Arch Microbiol 78:166–179

    CAS  Google Scholar 

  • Chapon C (1982) Role of the catabolite activator protein in the maltose regulon of Escherichia coli. J Bacteriol 150:722–729

    PubMed  CAS  Google Scholar 

  • Chen R, Schmidmayr W, Krämer C, Chen-Schmeisser U, Henning U (1980) Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12. Proc Natl Acad Sci USA 77:4592–4596

    PubMed  CAS  Google Scholar 

  • Cherry RJ (1979) Rotational and lateral diffusion of membrane proteins. Biochim Biophys Acta 559:289–327

    PubMed  CAS  Google Scholar 

  • Ciampi MS, Schmid MB, Roth JR (1982) The transposon Tn 10 provides a promoter for transcription of adjacent sequences. Proc Natl Acad Sci USA 79:5016–5020

    PubMed  CAS  Google Scholar 

  • Clark AF, Gerken TA, Hogg RW (1982) Proton nuclear magnetic resonance spectroscopy and ligand binding dynamics of Escherichia coli L-arabinose binding protein. Biochemistry 21:2227–2233

    PubMed  CAS  Google Scholar 

  • Crosa JH (1984) The relationship of plasmid-mediated iron transport and bacterial virulence. Ann Rev Microbiol 38:69–89

    CAS  Google Scholar 

  • Curtis NAC, Richmond HM, Sykes RB (1972) Periplasmic location of a β -lactamase specified either by a plasmid or a chromosomal gene in Escherichia coli. J Bacteriol 112:1433–1434

    PubMed  CAS  Google Scholar 

  • Dahl MK, Manson MD (1985) Interspecific reconstitution of maltose transport and Chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria. J Bacteriol 164:1057–1063

    PubMed  CAS  Google Scholar 

  • Darvenau RP, Hancock REW, Benz R (1984) Chemical modification of the anion selectivity of the PhoE porin from the Escherichia coli outer membrane. Biochim Biophys Acta 774:67–74

    Google Scholar 

  • Date T, Zwizinski C, Ludmerer S, Wickner W (1980) Mechanisms of membrane assembly: effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein. Proc Natl Acad Sci USA 77:827–831

    PubMed  CAS  Google Scholar 

  • Datta DB, Arden B, Henning U (1977) Major proteins of the Escherichia coli outer envelope membrane as bacteriophage receptors. J Bacteriol 131:821–829

    PubMed  CAS  Google Scholar 

  • Davies JK, Reeves P (1975) Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. J Bacteriol 123:102–117

    PubMed  CAS  Google Scholar 

  • Dawson RMC, Hauser H (1970) Binding of calcium to phospholipids. In: Cuthbert AW (ed) Calcium and cellular function. Macmillan, London, p 17

    Google Scholar 

  • Débarbouillé M, Shuman HA, Silhavy TJ, Schwartz M (1978) Dominant constitutive mutations in malT, the positive regulator gene of the maltose regulon in Escherichia coli. J Mol Biol 124:359–371

    PubMed  Google Scholar 

  • Débarbouillé M, Cossart P, Raibaud O (1982) A DNA sequence containing the control sites for gene malT and for the malPQ operon. Mol Gen Genet 185:88–92

    PubMed  Google Scholar 

  • Decad GM, Nikaido H (1976) Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J Bacteriol 128:325–336

    PubMed  CAS  Google Scholar 

  • DePamphilis ML, Adler J (1971) Fine structure and isolation of the hook-basalbody complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol 105:384–395

    PubMed  CAS  Google Scholar 

  • DePedro MA, Schwarz U (1981) Heterogeneity of newly inserted and pre-existing murein in the sacculus of Escherichia coli. Proc Natl Acad Sci USA 78:5856–5860

    CAS  Google Scholar 

  • Dietzel J, Kolb V, Boos W (1978) Pole cap formation in Escherichia coli following induction of the maltose-binding protein. Arch Microbiol 118:207–218

    PubMed  CAS  Google Scholar 

  • Dills SS, Aperson A, Schmidt MR, Saier MH Jr (1980) Carbohydrate transport in bacterial. Microbiol Rev 44:385–418

    PubMed  CAS  Google Scholar 

  • DiRienzo MJ, Nakamura K, Inouye M (1978) The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly, and functions. Ann Rev Biochem 47:481–532

    PubMed  CAS  Google Scholar 

  • Dorset DL, Engel A, Massalski A, Rosenbusch JP (1984) Three dimensional structure of a membrane pore. Electron microscopical analysis of Escherichia coli outer membrane matrix porin. Biophys J 45:128–129

    PubMed  CAS  Google Scholar 

  • Duplay P, Bedouelle H, Fowler AV, Zabin I, Saurin W, Hofnung M (1984) Sequences of the malE gene and of its product the maltose binding protein of Escherichia coli K12. J Biol Chem 259:10606–10613

    PubMed  CAS  Google Scholar 

  • Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R (1981) The origins of genetic information. Sci Am 244(4): 88–118

    PubMed  CAS  Google Scholar 

  • Eisenbach M, Adler J (1981) Bacterial cell envelopes with functional flagella. J Biol Chem 256:8807–8814

    PubMed  CAS  Google Scholar 

  • Eisenbach M, Margolin Y, Ravid S (1985) Sensory transduction in bacterial Chemotaxis. Abstract of the 13th A Katzir-Katchalsky Conference, Israel

    Google Scholar 

  • Elsbach P, Weiss J (1983) A reevaluation of the roles of the O2-dependent and O2-independent microbicidal systems of phagocytosis. Rev Infect Dis 5:843–853

    PubMed  CAS  Google Scholar 

  • Emr SD, Bassford JP (1982) Localization and processing of outer membrane and periplasmic proteins in Escherichia coli strains harboring export-specific suppressor mutations. J Biol Chem 257:5852–5860

    PubMed  CAS  Google Scholar 

  • Emr SD, Hedgpeth J, Clément JM, Silhavy TJ, Hofnung M (1980) Sequence analysis of mutations that prevent export of lambda receptor, an Escherichia coli outer membrane protein. Nature 285:82–85

    PubMed  CAS  Google Scholar 

  • Ferenci T (1980) The recognition of maltodextrins by Escherichia coli. Eur J Biochem 108:631–636

    PubMed  CAS  Google Scholar 

  • Ferenci T, Boos W (1980) The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins. J Supramol Struct 13:101–116

    PubMed  CAS  Google Scholar 

  • Ferenci T, Boos W, Schwartz M, Szmelcman S (1977) Energy coupling of the transport system of Escherichia coli dependent on maltose binding protein. Eur J Biochem 75:187–193

    PubMed  CAS  Google Scholar 

  • Fraley R, Wilschut J, Düzgunes N, Smith C, Papahadjopoulos D (1980) Studies on the mechanism of membrane fusion: role of phosphate in promoting calcium ion induced fusion of phospholipid vesicles. Biochemistry 19:6021–6029

    PubMed  CAS  Google Scholar 

  • Freudl R, Schwarz H, Klose M, Mowa NR, Henning U (1985) The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K12. EMBO J 4:3593–3598

    PubMed  CAS  Google Scholar 

  • Freundlieb S, Boos W (1986) α-amylase of Escherichia coli, mapping and cloning of the structural gene, mal S, and identification of its product as a periplasmic protein. Biol Chem 261:2946–2954

    CAS  Google Scholar 

  • Froshauer S, Beckwith J (1984) The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem 259:10896–10903

    PubMed  CAS  Google Scholar 

  • Furlong CE, Iida A (1984) Ribose transport and reconstitution in Escherichia coli. Microbiology 17A:61–65

    Google Scholar 

  • Furlong CE, Weiner JH (1970) Purification of a leucine-specific binding protein from Escherichia coli. Biochem Biophys Res Commun 38:1076–1083

    PubMed  CAS  Google Scholar 

  • Galey WR, Owen JD, Solomon AK (1973) Temperature dependence of nonelectrolyte permeation across red cell membranes. J Gen Physiol 61:727–746

    PubMed  CAS  Google Scholar 

  • Galloway DR, Furlong CE (1979) Reconstitution of binding protein-dependent ribose transport in spheroplasts of Escherichia coli K12. Arch Biochem Biophys 197:158–162

    PubMed  CAS  Google Scholar 

  • Gerdes RG, Strickland KP, Rosenberg H (1977) Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J Bacteriol 131:512–518

    PubMed  CAS  Google Scholar 

  • Gilson E (1983) Thesis. University of Paris

    Google Scholar 

  • Gilson E, Higgins CF, Hofnung M, Ames FLG, Nikaido H (1982) Extensive homology between membrane associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. J Biol Chem 257:9915–9918

    PubMed  CAS  Google Scholar 

  • Gilson E, Nikaido H, Hofnung M (1982) Sequence of the malK gene in Escherichia coli K12. Nucl Acids Res 10:7449–7458

    PubMed  CAS  Google Scholar 

  • Glauert AM, Thornley MJ (1969) The topography of the bacterial cell wall. Ann Rev Microbiol 23:159–198

    CAS  Google Scholar 

  • Goy MF, Springer MS, Adler J (1978) Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction. Cell 15:1231–1240

    PubMed  CAS  Google Scholar 

  • Griffith TW, Leach FR (1973) The effect of osmotic shock on vitamin transport in Escherichia coli. Arch Biochem Biophys 159:658–663

    CAS  Google Scholar 

  • Grinius L (1980) Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett 113:1–10

    PubMed  CAS  Google Scholar 

  • Gupte S, Wu E-S, Hoechli L, Hoechli M, Jacobson K, Sowers A, Hackenbrock CR (1984) Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Proc Natl Acad Sci USA 81:2606–2610

    PubMed  CAS  Google Scholar 

  • Hall MN, Silhavy TJ (1981) Genetic analysis of the ompB locus in Escherichia coli K12. J Mol Biol 151:1–15

    PubMed  CAS  Google Scholar 

  • Hall MN, Gabay J, Schwartz M (1983) Evidence for a coupling of synthesis and export of an outer membrane protein in Escherichia coli. EMBO J 2:15–19

    PubMed  CAS  Google Scholar 

  • Hailing MS, Simons RW, Way CJ, Walsh RB, Kleckner N (1982) DNA sequence organization of IS10-right of Tn 10 and comparison with IS10-left. Proc Natl Acad Sci USA 79:2608–2612

    Google Scholar 

  • Hancock REW (1984) Alterations in outer membrane permeability. Ann Rev Microbiol 38:237–264

    CAS  Google Scholar 

  • Hardaway KL, Buller CS (1979) Effect of ethylenediaminetetraacetate on phospholipids and outer membrane function in Escherichia coli. J Bacteriol 137:62–68

    PubMed  CAS  Google Scholar 

  • Hatfield D, Hofnung M, Schwartz M (1969) Nonsense mutations in the maltose A region of the genetic map of Escherichia coli. J Bacteriol 100:1311–1315

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL (1975 a) The maltose chemoreceptor of Escherichia coli. J Bacteriol 122:206–214

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL (1975 b) Role of the receptor for bacteriophage lambda in the functioning of the maltose chemoreceptor of Escherichia coli. J Bacteriol 124:119–126

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL, Adler J (1971) Role of the galactose binding protein in Chemotaxis of Escherichia coli toward galactose. Nature (London) New Biology 230:101–104

    CAS  Google Scholar 

  • Hazelbauer GL, Harayama S (1983) Sensory transduction in bacterial Chemotaxis. Int Rev Cytol 81:33–70

    PubMed  CAS  Google Scholar 

  • Hazelbauer GL, Engström P, Harayama S (1981) Methyl-accepting Chemotaxis protein III and transducer gene trg. J Bacteriol 145:43–49

    PubMed  CAS  Google Scholar 

  • Hedblom ML, Adler J (1980) Genetic and biochemical properties of Escherichia coli mutants with defects in serine Chemotaxis. J Bacteriol 144:1048–1060

    PubMed  CAS  Google Scholar 

  • Hengge R, Boos W (1983) Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems. Biochim Biophys Acta 737:443–478

    PubMed  CAS  Google Scholar 

  • Hengge-Aronis R, Boos W (1986) Translational control of exported proteins. J Bacteriol (in press)

    Google Scholar 

  • Henning U, Schmidmayr W, Hindennach I (1977) Major proteins of the outer cell envelope membrane of Escherichia coli K-12: multiple species of protein I. Mol Gen Genet 154:293–298

    PubMed  CAS  Google Scholar 

  • Heuzenroeder WM, Reeves P (1980) Periplasmic maltose-binding protein confers specificity on the outer membrane maltose pore of Escherichia coli. J Bacteriol 141:431–435

    PubMed  CAS  Google Scholar 

  • Heuzenroeder MW, Reeves P (1981) The tsx protein of Escherichia coli can act as a pore for aminoacids. J Bacteriol 147:1113–1116

    PubMed  CAS  Google Scholar 

  • Higgins CF (1984) Peptide transport systems of Salmonella typhimurium and Escherichia coli. Microbiology 17 A: 17–20

    Google Scholar 

  • Higgins CF, Hardie MM (1983) Periplasmic protein associated with the oligopeptide permeases of Salmonella typhimurium and Escherichia coli. J Bacteriol 155:1434–1438

    PubMed  CAS  Google Scholar 

  • Higgins CF, Haag PD, Nikaido K, Ardeshir F, Garcia G, Ames FLG (1982) Complete nucleotide sequence and identification of membrane components of the histidine transport operon of Salmonella typhimurium. Nature 298:723–727

    PubMed  CAS  Google Scholar 

  • Higgins CF, Hiles JD, Whally K, Jamieson DJ (1985) Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems. EMBO J 4:1033–1040

    PubMed  CAS  Google Scholar 

  • Higgins CF, Sutherland L, Cairney J, Booth IR (1986) The osmotic regulated proU gene of Salmonella typhimurium encodes a periplasmic betaine-binding protein. FEMS Microbiol Lett (in press)

    Google Scholar 

  • Hindahl MS, Crockford GWK, Hancock REW (1984) Outer membrane protein NmpC of Escherichia coli: pore-forming properties in black lipid bilayers. J Bacteriol 159:1053–1055

    PubMed  CAS  Google Scholar 

  • Hinz U (1983) Ph.D. Thesis. University of Basel, Switzerland

    Google Scholar 

  • Hirota Y, Suzuki H, Nishimura Y, Yasuda S (1977) On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. Proc Natl Acad Sci USA 74:1417–1420

    PubMed  CAS  Google Scholar 

  • Hiruma R, Yamaguchi A, Sawai T (1984) The effect of lipopolysaccharide on lipid bilayer permeability of β-lactam antibiotics. FEBS Lett 170:268–272

    PubMed  CAS  Google Scholar 

  • Hobot JA, Carleman E, Villiger W, Kellenberg E (1984) Periplasmic gel: new concept resulting from reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol 160:143–152

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Wilschut J, Scherphof G (1983) Kinetics of calcium phosphate-induced fusion of human erythrocyte ghosts monitored by mixing of aqueous contents. Biochim Biophys Acta 732:327–331

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Wilschut J, Scherphof G (1985) Fusion of erythrocyte ghosts induced by calcium phosphate. Eur J Biochem 146:131–140

    PubMed  CAS  Google Scholar 

  • Hofnung M (1974) Divergent operons and the genetic structure of the maltose B region in Escherichia coli K12. Genetics 76:169–184

    PubMed  CAS  Google Scholar 

  • Hofnung M (1982) (ed) The maltose system as a tool in molecular biology. Ann Microbiol (Inst Pasteur) 133 A: 5–273

    Google Scholar 

  • Hofnung M, Schwartz M, Hatfield D (1971) Complementation studies in the maltose-A region of the Escherichia coli K12 genetic map. J Mol Biol 61:681–694

    PubMed  CAS  Google Scholar 

  • Hofnung M, Hatfield D, Schwartz M (1974) malB region in Escherichia coli K12: characterization of new mutations. J Bacteriol 117:40–47

    PubMed  CAS  Google Scholar 

  • Hogg RW (1981) The amino acid sequence of the histidine binding protein of Salmonella typhimurium. J Biol Chem 256:1935–1939

    PubMed  CAS  Google Scholar 

  • Homma T, Nakae T (1982) Effects of cations on the outer membrane permeability of Escherichia coli. Tokai Exp Clin Med 7:171–175

    CAS  Google Scholar 

  • Hunt AG, Hong JS (1981) The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli. J Biol Chem 256:11988–11991

    PubMed  CAS  Google Scholar 

  • Hunt AG, Hong JS (1983) Involvement of histidine and tryptophan residues of glutamine binding protein in the interaction with membrane-bound components of the glutamine transport system of Escherichia coli. Biochemistry 2:844–850

    Google Scholar 

  • Ichihara S, Mizushima S (1979) Arrangement of proteins 0–8 and 0–9 in outer membrane of Escherichia coli. Eur J Biochem 100:321–328

    PubMed  CAS  Google Scholar 

  • Inouye M (1982) In: Martonosi (ed) Membranes and transport, vol 1, Lipoproteins from the bacterial outer membranes. Plenum, New York, pp 289–297

    Google Scholar 

  • Irbe R, Oishi M (1980) Prophage induction in a permeabilized cell system: induction by deoxyribonu-cleases and the role of recBC — deoxyribonuclease. J Bacteriol 144:1061–1067

    PubMed  CAS  Google Scholar 

  • Ishihara H, Hogg RW (1980) Amino acid sequence of the sulfate-binding protein from Salmonella typhimurium LT2. J Biol Chem 255:4616–4618

    Google Scholar 

  • Janoff AS, Gupte S, McGroarty EJ (1980) Correlation between temperature range of growth and structural transitions in membranes and lipids of Escherichia coli K12. Biochim Biophys Acta 598:641–644

    PubMed  CAS  Google Scholar 

  • Josefsson LG, Randall LL (1981) Different exported proteins in Escherichia coli show differences in the temporal mode of processing in vivo. Cell 25:151–157

    PubMed  CAS  Google Scholar 

  • Kadner RJ, Liggins GL (1973) Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol 115:514–521

    PubMed  CAS  Google Scholar 

  • Kawaji H, Mizuno T, Mizushima S (1979) Influence of molecular size and osmolality of sugars and dextrans on the synthesis of outer membrane proteins 0–8 and 0–9 of Escherichia coli K12. J Bacteriol 140:843–847

    PubMed  CAS  Google Scholar 

  • Kayalar C, Erdheim GR, Shanfelt A, Goldman K (1984) Colicin channels and cellular immunity. Curr Topics Cell Reg 24:301–312

    CAS  Google Scholar 

  • Kell DB (1984) Diffusion of proteins in procaryotic membranes: fast, free, random or directed? TIBS 3:86–87

    Google Scholar 

  • Kellermann O, Szmelcman S (1974) Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose binding protein. Eur J Biochem 47:139–149

    PubMed  CAS  Google Scholar 

  • Kleckner N (1983) In: Shapiro I (ed) Mobile genetic elements. Transposon Tn10. Academic, New York, pp 261–298

    Google Scholar 

  • Koch AL (1985) Bacterial growth and division or life without actin. TIBS 1:11–14

    Google Scholar 

  • Koiwai O, Hayashi H (1979) Studies on bacterial Chemotaxis. VI. Interaction of maltose receptor with membrane bound chemosensing component. J Biochem 86:27–34

    PubMed  CAS  Google Scholar 

  • Kondoh H, Ball CB, Adler J (1979) Identification of a methylaccepting Chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli. Proc Natl Acad Sci USA 76:260–264

    PubMed  CAS  Google Scholar 

  • Kort EN, Goy MF, Larsen SH, Adler J (1975) Methylation of a membrane protein involved in bacterial Chemotaxis. Proc Natl Acad Sci USA 72:3939–3943

    PubMed  CAS  Google Scholar 

  • Krikos A, Mutoh N, Boyd A, Simon MJ (1983) Sensory transducers of Escherichia coli are composed of discrete structural and functional domains. Cell 33:615–622

    PubMed  CAS  Google Scholar 

  • Labischinski H, Johannsen L (1986) In: Seidl HP, Schleifer KH (eds) Biological properties of peptidoglycan. de Gryter, Berlin (in press)

    Google Scholar 

  • Langridge R, Shinagawa H, Pardee AB (1970) Sulfate-binding protein from Salmonella typhimurium: physical properties. Science 169:59–61

    PubMed  CAS  Google Scholar 

  • Larsen SH, Adler J, Gargus JJ, Hogg RW (1974 a) Chemomechanical coupling without ATP: the source of energy for motility and Chemotaxis in bacteria. Proc Natl Acad Sci USA 71:1239–1243

    PubMed  CAS  Google Scholar 

  • Larsen SH, Reader RW, Kort EN, Tso WW, Adler J (1974b) Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature (London) 249:74–77

    CAS  Google Scholar 

  • Larson TJ, Ehrmann M, Boos W (1982) Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Bacteriol 258:5428–5432

    Google Scholar 

  • Leive L (1965) Release of lipopolysaccharide by EDTA treatment of Escherichia coli. Biochem Biophys Res Commun 21:290–296

    PubMed  CAS  Google Scholar 

  • Leive L (1974) The barrier function of the gram-negative envelope. Ann NY Acad Sci 235:109–127

    PubMed  CAS  Google Scholar 

  • Leive L, Kollin V (1967) Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes. Biochem Biophys Res Commun 28:229–236

    PubMed  CAS  Google Scholar 

  • Lengeier J, Auburger AJ, Mayer R, Pecher A (1981) The phosphoenolpyruvate dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in Chemotaxis of Escherichia coli K12. Mol Gen Genet 183:163–170

    Google Scholar 

  • Lever JE (1972) Purification and properties of a component of histidine transport in Salmonella typhimurium. J Biol Chem 247:4317–4326

    PubMed  CAS  Google Scholar 

  • Lo CY, Sanwal BD (1975) Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. J Biol Chem 250:1600–1602

    PubMed  CAS  Google Scholar 

  • Lounatmaa K, Mäkelä PH, Sarvas M (1976) The effect of polymyxin on the outer membrane of Salmonella: ultrastructure of wild-type and polymyxin-resistant strains. J Bacteriol 127:1900–1907

    Google Scholar 

  • Luckey M, Nikaido H (1980a) Specificity of diffusion channels produced by lambda phage receptor protein ofEscherichia coli. Proc Natl Acad Sci USA 77:167–171

    PubMed  CAS  Google Scholar 

  • Luckey M, Nikaido H (1980b) Diffusion of solutes through channels produced by phage lambda receptor protein of Escherichia coli: inhibition by higher oligosaccharides of maltose series. Biochem Biophys Res Commun 93:166–171

    PubMed  CAS  Google Scholar 

  • Lugtenberg B (1981) Composition and function of the outer membrane of Escherichia coli. TIBS 10:262–266

    Google Scholar 

  • Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737:51–115

    PubMed  CAS  Google Scholar 

  • Lugtenberg EJJ, Peters R (1976) Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta 441:38–47

    PubMed  CAS  Google Scholar 

  • MacAlister TJ, MacDonald B, Rothfield LI (1983) The periseptal annulus: an organelle associated with cell division in gram-negative bacteria. Proc Natl Acad Sci USA 80:1372–1376

    PubMed  CAS  Google Scholar 

  • Macnab RM, Koshland DE Jr (1972) The gradient-sensing mechanism in bacterial Chemotaxis. Proc Natl Acad Sci USA 69:2509–2512

    PubMed  CAS  Google Scholar 

  • Mandel M, Higa A (1970) Calcium dependent bacteriophage DNA infection. J Mol Biol 53:159–162

    PubMed  CAS  Google Scholar 

  • Manderslot JG, Gerritsen WJ, Lennissen-Bijrett J, van Echteld CJA, Nordam PC, De Gier J (1981) Biochim Biophys Acta 646:106–113

    Google Scholar 

  • Maness ML, Sparling PF (1973) Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoea. J Infect Dis 128:321–330

    PubMed  CAS  Google Scholar 

  • Manson MD, Kossmann M (1986) Mutations in tar suppress defects in maltose Chemotaxis caused by specific malE mutations. J Bacteriol 165:34–40

    PubMed  CAS  Google Scholar 

  • Manson MD, Tedesco P, Berg HC, Harold FM, van der Drift C (1977) A protonmotive force drives bacteria flagella. Proc Natl Acad Sci USA 74:3060–3064

    PubMed  CAS  Google Scholar 

  • Manson MD, Boos W, Bassford PJ, Rasmussen BA (1985) Dependence of maltose transport and Chemotaxis on the amount of maltose-binding protein. J Biol Chem 260:9727–9733

    PubMed  CAS  Google Scholar 

  • Manson MD, Blank V, Brade G, Higgins CF (1986) Peptide Chemotaxis in Escherichia coli involves the Tap signal transducer and the dipeptide permease. Nature 321:253–256

    PubMed  CAS  Google Scholar 

  • Mao B, McCommon JA (1983) Theoretical study of hinge bending in L-arabinose-binding protein. J Biol Chem 258:12543–12547

    PubMed  CAS  Google Scholar 

  • Matsumara P, Bartlett D, Stader J, Vacante D, Rydel J, MacNally D, Malakooti J, Beman J (1985) Architecture and interactions of the bacterial Chemotaxis machinery. Abstr. of the 13. A Katzir-Katchalsky Conference, Israel

    Google Scholar 

  • May G, Faatz E, Villarejo M, Bremer E (1986) Binding-protein-dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K-12. Molec Gen Genet (in press)

    Google Scholar 

  • McCloskey M, Poo MM (1984) Protein diffusion in cell membranes: some biological implications. Int Rev Cytol 87:19–81

    PubMed  CAS  Google Scholar 

  • Meador WE, Quiocho FA (1978) Preliminary crystallographic data for a leucine, isoleucine, valine-binding protein from Escherichia coli K12. J Mol Biol 123:499–502

    PubMed  CAS  Google Scholar 

  • Medveczky N, Rosenberg H (1970) The phosphate-binding protein of Escherichia coli. Biochim Biophys Acta 211:158–168

    CAS  Google Scholar 

  • Melchior DL, Steim JM (1976) Thermotropic transitions in biomembranes. Ann Rev Biophys Bioeng 6:205–238

    Google Scholar 

  • Michaelis S, Beckwith J (1982) Mechanism of incorporation of cell envelope proteins in Escherichia coli. Annu Rev Microbiol 36:435–465

    PubMed  CAS  Google Scholar 

  • Miller III DM, Olson JS, Pflugrath JW, Quiocho FA (1983) Rates of ligand binding to periplasmic proteins involved in bacterial transport and Chemotaxis. J Biol Chem 258:13665–13672

    PubMed  CAS  Google Scholar 

  • Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970

    PubMed  CAS  Google Scholar 

  • Mizuno T, Mutoh N, Panasenko SM, Imae Y (1986) Acqusition of maltose Chemotaxis in Salmonella typhimurium by the introduction of the Escherichia coli chemosensory transducer gene. J Bacteriol 165:890–895

    PubMed  CAS  Google Scholar 

  • Monod J, Torriani AM (1950) De l’amylomaltase d’Escherichia coli. Ann Inst Pasteur 78:65–77

    CAS  Google Scholar 

  • Mowbray SL, Petsko GA (1982 a) Preliminary X-ray data for the ribose-binding protein from Salmonella typhimurium. J Mol Biol 160:545–547

    PubMed  CAS  Google Scholar 

  • Mowbray SL, Petsko GA (1982b) The X-ray structure of the periplasmic galactose binding protein from Salmonella typhimurium at 3.0 Å resolution. J Biol Chem 258:7991–7997

    Google Scholar 

  • Mowbray SL, Foster DL, Koshland DE (1985) Proteolytic fragments identified with domains of the aspartate chemoreceptor. J Biol Chem 260:11711–11718

    PubMed  CAS  Google Scholar 

  • Murphy DI, Woodrow IG (1983) Lateral heterogeneity in the distribution of thylakoid membrane lipid and protein components and its implications for molecular organization of photosynthetic membranes. Biochim Biophys Acta 725:104–112

    CAS  Google Scholar 

  • Mutoh N, Simon M (1986) Nucleotide sequence corresponding to five Chemotaxis genes in Escherichia coli. J Bacteriol 165:161–166

    PubMed  CAS  Google Scholar 

  • Nakae T (1975) Outer membrane of Salmonella typhimurium: reconstitution of sucrose-permeable membrane vesicles. Biochem Biophys Res Commun 64:1224–1230

    PubMed  CAS  Google Scholar 

  • Nakae T (1976) Outer membrane of Salmonella. Isolation of protein complex that produces transmembrane channels. J Biol Chem 251:2176–2178

    PubMed  CAS  Google Scholar 

  • Nakae T, Ishii J (1980) Permeability properties of Escherichia coli outer membrane containing pore-forming proteins: comparison between lambda receptor protein and porin for saccharide permeation. J Bacteriol 142:735–740

    PubMed  CAS  Google Scholar 

  • Nakae T, Nikaido H (1975) Outer membrane as a diffusion barrier in Salmonella typhimurium. Penetration of oligo- and polysaccharides into isolated outer membrane vesicles and cells with degraded peptidoglycan layer. J Biol Chem 250:7359–7365

    PubMed  CAS  Google Scholar 

  • Nakae T, Ishii J, Tokunaga M (1979) Subunit structure of functional porin oligomers that form permeability channels in the outer membrane of Escherichia coli. J Biol Chem 254:1457–1461

    PubMed  CAS  Google Scholar 

  • Neilands JB (1982) Microbial envelope proteins related to iron. Ann Rev Microbiol 36:285–309

    CAS  Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    PubMed  CAS  Google Scholar 

  • Neuhaus J-M, Schindler H, Rosenbusch J (1983) The periplasmic maltose-binding protein modifies the channel-forming characteristics of maltoporin. EMBO J 2:1987–1991

    PubMed  CAS  Google Scholar 

  • Nikaido H (1976) Outer membrane of Salmonella typhimurium transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 433:118–132

    PubMed  CAS  Google Scholar 

  • Nikaido H (1983) Proteins forming large channels from bacterial and mitochondrial outer membranes: porins and phage lambda receptor protein. Meth Enzymol 97:85–100

    PubMed  CAS  Google Scholar 

  • Nikaido H, Nakae T (1979) The outer membrane of Gram-negative bacteria. Adv Microb Physiol 20:163–250

    PubMed  CAS  Google Scholar 

  • Nikaido H, Rosenberg EY (1981) Effect of solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. J Gen Physiol 77:121–135

    PubMed  CAS  Google Scholar 

  • Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    PubMed  CAS  Google Scholar 

  • Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32

    PubMed  CAS  Google Scholar 

  • Nikaido H, Wu H (1984) Amino acid sequence homology among the major outer membrane proteins of Escherichia coli. Proc Natl Acad Sci USA 81:1048–1052

    PubMed  CAS  Google Scholar 

  • Nikaido H, Takeuchi Y, Ohnishi S, Nakae T (1977) Outer membrane of Salmonella typhimurium. Electron spin resonance studies. Biochim Biophys Acta 465:152–164

    PubMed  CAS  Google Scholar 

  • Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with β -lactams in intact cells. J Bacteriol 153:232–240

    PubMed  CAS  Google Scholar 

  • Niwano M, Taylor BL (1982) Novel sensory adaptation mechanism in bacterial Chemotaxis to oxygen and phosphotransferase substrates. Proc Natl Acad Sci USA 79:11–15

    PubMed  CAS  Google Scholar 

  • Nossal NG, Heppel LA (1966) The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem 241:3055–3062

    PubMed  CAS  Google Scholar 

  • Ohnishi S, Ito T (1974) Calcium-induced phase separation in phosphatidylserine-phosphatidylcholine membranes. Biochemistry 13:881–887

    CAS  Google Scholar 

  • Ordal GW (1977) Calcium ion regulates chemotactic behaviour in bacteria. Nature 270:66–67

    PubMed  CAS  Google Scholar 

  • Overbeeke N, van Scharrenburg G, Lugtenberg B (1980) Antigenic relationships between pore proteins of Escherichia coli K12. Eur J Biochem 110:247–254

    PubMed  CAS  Google Scholar 

  • Oxender DL, Anderson JJ, Daniels CJ, Landick R, Gunsalus RP, Zurawski G, Janofsky C (1980) Structural and functional analysis of cloned DNA containing genes responsible for branched chain amino acid transport in E. coli. Proc Natl Acad Sci USA 77:1412–1416

    PubMed  CAS  Google Scholar 

  • Palm D, Goerl R, Burger KJ (1985) Evolution of catalytic and regulatory sites in phosphorylases. Nature (London) 313:500–502

    CAS  Google Scholar 

  • Palmer TN, Ryman BE, Whelan WJ (1976) The action pattern of amylomaltase from Escherichia coli. Eur J Biochem 69:105–115

    PubMed  CAS  Google Scholar 

  • Pardee AB, Prestidge LS, Whipple MB, Dreyfuss J (1966) A binding site for sulphate and sulfate transport into Salmonella typhimurium. J Biol Chem 241:3962–3969

    PubMed  CAS  Google Scholar 

  • Parkinson JS, Hazelbauer GL (1983) In: Beckwith J, Davies J, Gallant JA (eds) Gene function in procaryotes. Cold Spring Harbor Laboratories, Cold Spring Harbor New York, pp 293–318

    Google Scholar 

  • Parsons RG, Hogg RW (1974) Crystallization and characterization of the L-arabinose binding protein of Escherichia coli B/r. J Biol Chem 249:3602–3607

    PubMed  CAS  Google Scholar 

  • Penrose WP, Nochoalds GE, Piperno JR, Oxender DL (1968) Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem 243:5921–5928

    PubMed  CAS  Google Scholar 

  • Perlman RL, Pastan I (1969) Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase-deficient mutant of Escherichia coli. Biochem Biophys Res Commun 37:151–157

    PubMed  CAS  Google Scholar 

  • Peterkofsky A, Gazdar C (1974) Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci USA 71:2324–2328

    PubMed  CAS  Google Scholar 

  • Peterson AA, Hancock REW, McGroarty EJ (1985) Binding of polycationic antibiotics and polyamines to lipopolysaccharides of Pseudomonas aeruginosa. J Bacteriol 164:1256–1261

    PubMed  CAS  Google Scholar 

  • Postma PW (1981) Defective enzyme II-BGlc of the phosphoenolpyruvate: sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J Bacteriol 147:382–389

    PubMed  CAS  Google Scholar 

  • Pugsley AP, Schnaitman CA (1978) Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli. J Bacteriol 135:1118–1129

    PubMed  CAS  Google Scholar 

  • Quiocho FA, Gilliland GL, Philips GN Jr (1977) The 2.8 Å resolution of the L-arabinoses-binding protein from Escherichia coli. J Biol Chem 252:5142–5149

    PubMed  CAS  Google Scholar 

  • Quiocho FA, Meador WE, Pflugrath JW (1979) Preliminary chrystallographic data of receptors for transport and Chemotaxis in Escherichia coli: D-galactose and maltose-binding proteins. J Mol Biol 133:181–184

    PubMed  CAS  Google Scholar 

  • Rae AS, Strickland KP, Medveczky N, Rosenberg H (1976) Studies of phosphate transport in Escherichia coli. I. Reexamination of the effect of osmotic shock and cold shock on phosphate uptake and some attempts to restore uptake with phosphate binding protein. Biochim Biophys Acta 433:555–563

    PubMed  CAS  Google Scholar 

  • Raibaud O, Roa M, Braun-Breton C, Schwartz M (1979) Structure of the malB region in Escherichia coli K12. I. Genetic map of the malK-lamB Operon. Mol Gen Genet 174:241–248

    PubMed  CAS  Google Scholar 

  • Raibaud O, Gutierrez C, Schwartz M (1985) Essential and non essential sequences in malPp, a positively controlled promoter in Escherichia coli. J Bacteriol 161:1201–1208

    PubMed  CAS  Google Scholar 

  • Rasched J, Shuman HA, Boos W (1976) The dimer of the E. coli galactose-binding protein. Eur J Biochem 69:545–550

    CAS  Google Scholar 

  • Reader RW, Tso WW, Springer MS, Goy MF, Adler J (1979) Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli. J Gen Microbiol 111:363–374

    PubMed  CAS  Google Scholar 

  • Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243

    PubMed  CAS  Google Scholar 

  • Repaske R (1958) Lysis of Gram-negative organisms and the role of Versene. Biochem Biophys Acta 30:225–232

    PubMed  CAS  Google Scholar 

  • Richarme G (1982 a) Interaction of the maltose-binding protein with membrane vesicles of Escherichia coli. J Bacteriol 149:662–667

    PubMed  CAS  Google Scholar 

  • Richarme G (1982 b) Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein. Biochem Biophys Res Commun 105:476–481

    PubMed  CAS  Google Scholar 

  • Rick PD, Neumeyer BA, Young DA (1983) Effect of altered lipid A synthesis on the synthesis of the OmpA protein in Salmonella typhimurium. J Biol Chem 258:629–635

    PubMed  CAS  Google Scholar 

  • Ritschel ET, Gottert H, Lüderitz O, Westphal O (1972) Nature and linkages of fatty acids present in the lipid A component of Salmonella lipopolysaccharides. Eur J Biochem 28:166–173

    Google Scholar 

  • Roantree RJ, Kuo T-T, MacPhee DG (1977) The effect of defined lipopolysaccharide core defects upon antibiotic resistance of Salmonella typhimurium. J Gen Microbiol 103:223–234

    PubMed  CAS  Google Scholar 

  • Robb FT, Furlong CE (1980) Reconstitution of binding protein dependent ribose transport in spheroblasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium. J Supramol Struct 13:183–190

    PubMed  CAS  Google Scholar 

  • Rodrigez-Tebar A, Barbas J, Vasquez D (1985) Location of some proteins involved in peptidoglycan synthesis and cell division in the inner and outer membranes of Escherichia coli. J Bacteriol 161:243–248

    Google Scholar 

  • Robertson DE, Kroon PA, Ho C (1977) Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry 16:1443–1451

    PubMed  CAS  Google Scholar 

  • Rosen BP (1971) Basic amino acid transport in Escherichia coli. J Biol Chem 246:3653–3662

    PubMed  CAS  Google Scholar 

  • Rosen BP (1973) Basic amino acid transport in Escherichia coli. J Biol Chem 248:1211–1218

    PubMed  CAS  Google Scholar 

  • Rosenbusch JP (1974) Characterization of the major envelope protein from Escherichia coli. Regular arrangement on the peptidoglycan and unusual dodecylsulfate binding. J Biol Chem 249:8019–8029

    PubMed  CAS  Google Scholar 

  • Rothfield LI, MacAlister TJ, Cook WR (1986) Murein-membrane interactions in cell division. In: Inouye M (ed.) Bacterial outer membranes as model systems. Wiley, New York, in press

    Google Scholar 

  • Rotman B, Guzman R (1984) Galactose-binding protein-dependent transport in reconstituted membrane vesicles of Escherichia coli. Microbiology 17 A: 57–60

    Google Scholar 

  • Ryter A, Shuman H, Schwartz M (1975) Integration of the receptor for bacteriophage lambda in the outer membrane of Escherichia coli: coupling with cell division. J Bacteriol 122:295–301

    PubMed  CAS  Google Scholar 

  • Sabelnikov AG, Domaradsky JV (1981) Effect of metabolic inhibitors on entry of exogenous deoxyribonucleic acid into Ca2+-treated Escherichia coli cells. J Bacteriol 146:435–443

    PubMed  CAS  Google Scholar 

  • Sabelnikov AG, Ilyashenko BN, Chupin W, Vasilenko IA (1985) The in vivo formation of nonbilayer lipid phase in E. coli membranes during development of Ca2+-dependent competence. Biochem Biophys Res Commun 2:464–472

    Google Scholar 

  • Sahl H-G (1985) Bactericidal cationic peptides involved in bacterial antagonism and host defense. Microbial Sci 2:212–217

    CAS  Google Scholar 

  • Saper MA, Quiocho FA (1983) Leucine-isoleucine-valine-binding protein from Escherichia coli. Structure at 3.0 Å resolution and location of the binding site. J Biol Chem 258:11057–11062

    PubMed  CAS  Google Scholar 

  • Schindler M, Osborn MJ (1979) Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18:4425–4430

    PubMed  CAS  Google Scholar 

  • Schindler H, Rosenbusch JP (1978) Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. Proc Natl Acad Sci USA 75:3751–3755

    PubMed  CAS  Google Scholar 

  • Schindler M, Osborn MJ, Koppel D (1980) Lateral diffusion of lipopolysaccharide in the outer membrane of Salmonella typhimurium. Nature (London) 285:261–263

    CAS  Google Scholar 

  • Schleifer KH, Stackebrandt E (1983) Molecular systematics in procaryotes. Ann Rev Microbiol 37:143–187

    CAS  Google Scholar 

  • Schulman H, Kennedy EP (1979) Localization of membrane-derived oligosaccharides in the outer envelope of Escherichia coli and their occurrence in other Gram-negative bacteria. J Bacteriol 137:686–688

    PubMed  CAS  Google Scholar 

  • Schwartz D, Beckwith JR (1970) Mutants missing a factor necessary for the expression of catabolite- sensitive operons in Escherichia coli. In: Beckwith JR, Zipser D (eds) The lactose Operon. Cold Spring Harbor Laboratories, New York, pp 417–422

    Google Scholar 

  • Schwartz M (1967) Expression phenotypique et localisation genetique de mutations affectant le metabolisme du maltose chez Escherichia coli. Ann Inst Pasteur 112:673–701

    CAS  Google Scholar 

  • Schwartz M (1986) In: Neidhart FC, Ingraham IL, Low KB, Magasanik B, Shaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and molecular biology. ASM Publications Washington DC (in press)

    Google Scholar 

  • Schwartz M, Le Minor L (1975) Occurence of the bacteriophage lambda receptor in some enterobac-teriaceae. J Virol 15:679–685

    PubMed  CAS  Google Scholar 

  • Schwartz M, Kellermann O, Szmelcman S, Hazelbauer GL (1976) Further studies on the binding of maltose with the maltose-binding protein of E. coli. Eur J Biochem 71:167–170

    PubMed  CAS  Google Scholar 

  • Schwartz M, Roa M, Débarbouillé M (1981) Mutations that affect lamB gene expression at a post-transcriptional level. Proc Natl Acad Sci USA 78:2937–2941

    PubMed  CAS  Google Scholar 

  • Schweizer M, Schwarz H, Sonntag I, Henning U (1976) Mutational change of membrane architecture. Mutants of Escherichia coli K12 missing major proteins of the outer cell envelope membrane. Biochim Biophys Acta 448:474–491

    PubMed  CAS  Google Scholar 

  • Segall JE, Manson MD, Berg HC (1982) Signal processing times in bacterial Chemotaxis. Nature (London) 296:855–857

    CAS  Google Scholar 

  • Segall JE, Ishihara A, Berg H (1985) Chemotactic signaling in filamentous cells of Escherichia coli. J Bacteriol 161:51–59

    PubMed  CAS  Google Scholar 

  • Shuman H (1982) Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose binding protein and evidence of a substrate recognition site in the cytoplasmic membrane. J Biol Chem 257:5455–5461

    PubMed  CAS  Google Scholar 

  • Shuman HA, Silhavy TJ (1981) Identification of the malK gene product, a peripheral membrane component of the Escherichia coli maltose transport system. J Biol Chem 256:560–562

    PubMed  CAS  Google Scholar 

  • Shuman HA, Silhavy TJ, Beckwith JR (1980) Labeling proteins with β-galactosidase by gene fusion. J Biol Chem 255:168–174

    PubMed  CAS  Google Scholar 

  • Simons RW, Kleckner N (1983) Translational control of IS10 transposition. Cell 34:683–691

    PubMed  CAS  Google Scholar 

  • Singh AP, Bragg PD (1977) Energetics of galactose, proline, and glutamine transport in a cytochrome deficient mutant of Salmonella typhimurium. J Supramol Struct 6:389–398

    PubMed  CAS  Google Scholar 

  • Singh AP, Bragg PD (1979) The action of tributylin chloride on the uptake of proline and glutamine by intact cells of Escherichia coli. Can J Biochem 57:1376–1383

    PubMed  CAS  Google Scholar 

  • Smit J, Nikaido H (1978) Outer membrane of Gram-negative bacteria. XVIII. Electron microscopic studies on porin insertion sites and growth of cell surface of Salmonella typhimurium. J Bacteriol 135:687–702

    PubMed  CAS  Google Scholar 

  • Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze-fracture studies with lipopolysaccharide mutants. J Bacteriol 124:942–958

    PubMed  CAS  Google Scholar 

  • Socca JJ, Pland RL, Zoon KC (1974) Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J Bacteriol 118:369–373

    Google Scholar 

  • Soltyk A, Slugar D, Picchowska M (1975) Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J Bacteriol 124:1429–1438

    PubMed  CAS  Google Scholar 

  • Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136:280–285

    PubMed  CAS  Google Scholar 

  • Springer MS, Goy MF, Adler J (1977) Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins. Proc Natl Acad Sci USA 74:3312–3316

    PubMed  CAS  Google Scholar 

  • Spudich JL, Koshland DE Jr (1975) Quantitation of the sensory response in bacterial Chemotaxis. Proc Natl Acad Sci USA 72:710–713

    PubMed  CAS  Google Scholar 

  • Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252:7850–7861

    PubMed  CAS  Google Scholar 

  • Strain SM, Fesik SW, Armitage IM (1983) Structure and metal-binding properties of lipopolysaccharides from heptoseless mutants of Escherichia coli studied by C-13 and P-31 nuclear magnetic resonance. J Biol Chem 258:13466–13477

    PubMed  CAS  Google Scholar 

  • Strauch KL, Kumamoto CA, Beckwith J (1986) Does SecA mediate coupling between secretion and translation in Escherichia coli? J Bacteriol 166:505–512

    PubMed  CAS  Google Scholar 

  • Sweet GD (1983) Tricarboxylate transport proteins of Salmonella typhimurium. Ph D Thesis, University of Victoria, Canada

    Google Scholar 

  • Sweet GD, Kay CM, Kay WW (1984) Tricarboxylate-binding proteins of Salmonella typhimurium, purification, crystallization, and physical properties. J Biol Chem 259:1586–1592

    PubMed  CAS  Google Scholar 

  • Szmelcman S, Adler J (1976) Change in membrane potential during bacterial Chemotaxis. Proc Natl Acad Sci USA 73:4387–4391

    PubMed  CAS  Google Scholar 

  • Szmelcman S, Hofnung M (1975) Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol 124:112–118

    PubMed  CAS  Google Scholar 

  • Szmelcman S, Schwartz M, Silhavy TJ, Boos W (1976) Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants with the dissociation constants of the maltose binding protein as measured by fluorescence quenching. Eur J Biochem 65:13–19

    PubMed  CAS  Google Scholar 

  • Taketo A (1974) Sensitivity of Escherichia coli to viral nucleic acid. VIII. Idiosyncrasy of Ca2+- dependent competence of DNA. J Biochem 75:895–904

    PubMed  CAS  Google Scholar 

  • Taketo A (1975) Sensitivity of Escherichia coli to viral nucleic acid. X. Ba2+ induced competence for transfecting DNA. Z Naturforsch 30 b: 520–522

    Google Scholar 

  • Taketo A (1977) Sensitivity of Escherichia coli to viral nucleic acid. XII. Ca2+- or Ba2+-facilitated transfection of cell envelope mutants. Z Naturforsch 32c:.429–433

    CAS  Google Scholar 

  • Takeuchi Y, Nikaido H (1981) Persistence of segregated phospholipid domains in phospholipid-lipopolysaccharide mixed bilayers: studies with spin-labeled phospholipids. Biochemistry 20:523–529

    PubMed  CAS  Google Scholar 

  • Thieme R, Lay H, Oser A, Lehmann J, Wrissenberg S, Boos W (1986) 3-Azi-1-methoxybutyl-D-maltooligosaccharides specifically bind to the maltose/maltooligosaccharide-binding protein of Escherichia coli and can be used as photoaffinity labels. Eur J Biochem (in press)

    Google Scholar 

  • Tilby M, Hindennach J, Henning U (1978) Bypass of receptor-mediated resistance of colicin E3 in Escherichia coli K12. J Bacteriol 136:1189–1191

    PubMed  CAS  Google Scholar 

  • Tomoeda M, Innzuka M, Kubo N, Nakamura S (1968) Effective elimination of drug resistance and sex factors in Escherichia coli by sodium dodecyl sulfate. J Bacteriol 95:1078–1089

    PubMed  CAS  Google Scholar 

  • Treptow NA, Shuman HA (1985) Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. J Bacteriol 163:654–660

    PubMed  CAS  Google Scholar 

  • Vaara M (1981) Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants. J Bacteriol 148:426–434

    PubMed  CAS  Google Scholar 

  • Vaara M, Vaara T (1981) Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother 19:578–583

    PubMed  CAS  Google Scholar 

  • Vaara M, Vaara T (1983) Polycations sensitizes enteric bacteria to antibiotics. Antimicrob Agents Chemother 24:107–113

    PubMed  CAS  Google Scholar 

  • Vaara M, Vaara T, Jensen M, Helander I, Nurminen M, Rietschel ET, Mäkelä PH (1981) Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett 129:145–149

    PubMed  CAS  Google Scholar 

  • van Alphen L, Lugtenberg B, van Boxtel R, Verhoef K (1977) Architecture of the outer membrane of Escherichia coli. K12: I Action of phospholipases A2 and C on wild-type strains and outer membrane mutants. Biochim Biophys Acta 466:257–268

    PubMed  Google Scholar 

  • van Die JM, Bergmans HEN, Hoekstra WPM (1983) Transformation in Escherichia coli: Studies on the role of the heat shock in induction of competence. J Gen Microbiol 129:663–670

    PubMed  Google Scholar 

  • van Golde IM, Shulmann GH, Kennedy EP (1973) Metabolism of membrane lipids and its relation to a novel class of oligosaccharides in Escherichia coli. Proc Natl Acad Sci USA 70:1368–1372

    PubMed  Google Scholar 

  • Verkleij AJ (1984) Lipid intramembraneous particles. Biochim Biophys Acta 779:43–63

    PubMed  CAS  Google Scholar 

  • von Meyenburg K (1971) Transport-limited growth rates in a mutant of Escherichia coli. J Bacteriol 107:878–888

    Google Scholar 

  • Vos-Scheperkeuter GH, Witholt B (1984) Assembly pathway of newly synthesized LamB protein, an outer membrane protein of Escherichia coli K-12. J Mol Biol 175:511–528

    PubMed  CAS  Google Scholar 

  • Vos-Scheperkeuter GH, Pas E, Brakenhoff GJ, Nanninga N, Witholt B (1984) Topography of insertion of LamB protein into the outer membrane of Escherichia coli wild-type and lac-lamB cells. J Bacteriol 159:440–447

    PubMed  CAS  Google Scholar 

  • Walter P, Blobel G (1982) Signal recognition particle contains a 7S PNA essential for protein translocation across the endoplasmic reticulum. Nature 299:691–698

    PubMed  CAS  Google Scholar 

  • Wandersman C, Schwartz M, Ferenci T (1979) Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol 140:1–13

    PubMed  CAS  Google Scholar 

  • Wang EA, Koshland DE Jr (1980) Receptor structure in the bacterial sensing system. Proc Natl Acad Sci USA 77:7157–7161

    PubMed  CAS  Google Scholar 

  • Weigand RA, Vinci KD, Rothfield LJ (1976) Morphogenesis of the bacterial division septum: a new class of septation-defective mutants. Proc Natl Acad Sci USA 73:1882–1886

    PubMed  CAS  Google Scholar 

  • Weiner JH, Heppel LA (1971) A binding protein for glutamine and its relation to active transport in E. coli. J Biol Chem 246:6933–6941

    Google Scholar 

  • Weston A, Brown MGM, Perkins HR, Saunders JR, Humphreys GO (1981) Transformation of Escherichia coli with plasmid deoxyribonucleic acid: Calcium-induced binding of deoxyribonucleic acid to whole cells and to isolated membrane fractions. J Bacteriol 145:780–787

    PubMed  CAS  Google Scholar 

  • Westphal O, Lüderitz O (1954) Chemische Erforschung von Lipopolysacchariden gram-negativer Bakterien. Ang Chemie 66:407–417

    CAS  Google Scholar 

  • Wetzel BK, Spicer SS, Dvorak HF, Heppel LA (1970) Cytochemical localization of certain phosphatases in Escherichia coli. J Bacteriol 104:529–542

    PubMed  CAS  Google Scholar 

  • Willis RC, Furlong CE (1974) Purification and properties of a ribose-binding protein from Escherichia coli. J Bacteriol 249:6926–6929

    CAS  Google Scholar 

  • Willis RC, Furlong CE (1975) Purification and properties of a periplasmic glutamate-aspartate binding protein from Escherichia coli K12 strain W3092. J Bacteriol 250:2574–258

    CAS  Google Scholar 

  • Woese CR (1981) Archaebacteria. Sci Am 244(6): 98–122

    CAS  Google Scholar 

  • Young JG, Rogers BL, Campbell HD, Jaworowski A, Shaw DC (1981) Nucleotide sequence coding for the respiratory NADH-dehydrogenase of E. coli. Eur J Biochem 116:165–170

    PubMed  CAS  Google Scholar 

  • Zukin RS, Strange PG, Heavey LR, Koshland DE Jr (1977) Properties of the galactose-binding protein of S. typhimurium and E. coli. Biochemistry 16:381–386

    PubMed  CAS  Google Scholar 

  • Zukin RS, Hartig PR, Koshland DE Jr (1979) Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules. Biochemistry 18:5599–5605

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Brass, J.M. (1986). The Cell Envelope of Gram-Negative Bacteria: New Aspects of Its Function in Transport and Chemotaxis. In: Clarke, A., et al. Current Topics in Microbiology and Immunology 129. Current Topics in Microbiology and Immunology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-71399-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-71399-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-71401-6

  • Online ISBN: 978-3-642-71399-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics