Skip to main content

Novel Approaches in the Study of Brain Acetylcholine Function: Neuropharmacology, Neuroanatomy, and Behavior

  • Conference paper

Part of the book series: Advances in Applied Neurological Sciences ((NEUROLOGICAL,volume 2))

Abstract

Over the last 30 years, it has become well-recognized that drugs blocking the muscarinic subtype of acetylcholine (ACh) receptors in the brain have selective and reproducible effects on behaviors requiring learning, memory, and stimulus discrimination in both animals (Hearst 1958; Carlton 1963; Warburton and Heise 1972; Bartus and Johnson 1976; Heise et al. 1976; Moore et al. 1976; Milar 1981; Spencer and Lal 1983; Spencer et al. 1985) and humans (Ostfeld and Aruguete 1962; Hrbek et al. 1971; Crow and Grove-White 1973; Drachman 1978; Mewaldt and Ghoneim 1979; Wesnes and Warburton 1984). Behavioral effects that are in many ways similar to those observed after central muscarinic blockade are also seen after electrolytic lesions of brain structures that involve a major cholinergic pathway, such as the medial-septal—hippocampal system (Douglas 1967; Walker et al. 1972; Myhrer 1975; Jarrard 1975, 1976; Johnson et al. 1977; Sinnamon et al. 1978), and after local infusions of muscarinic antagonists into the hippocampus (Leaton and Rech 1972; Ross and Grossman 1974; Leith and Barrett 1975; Ross et al. 1975; Blozovski 1979; Solomon and Gottfried 1981). Another major cholinergic projection passes from the nucleus basalis magnocellularis (nBM) to the neocortex, and lesions in this nucleus also produce antimuscarinic-like behavioral deficits (Flicker et al. 1983; Friedman et al. 1983), which are further increased by concurrent administration of centrally active muscarinic antagonists (Lo Conte et al. 1982).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ader R, Weinen JAWM, Moleman P (1972) Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psychon Sci 26: 125–128

    Google Scholar 

  • Bartus RT, Johnson HR (1976) Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacol Biochem Behav 5: 39–46

    Article  PubMed  CAS  Google Scholar 

  • Bauer RH (1982) Age-dependent effects of scopolamine on avoidance, locomotor activity, and rearing. Behav Brain Res 5: 261–279

    Article  PubMed  CAS  Google Scholar 

  • Bevan P (1984) (3H)oxotremorine-M binding to membranes prepared from rat brain and heart: evidence for subtypes of muscarinic receptors. Eur J Pharmacol 101:101–110

    Article  PubMed  CAS  Google Scholar 

  • Bigl V, Woolf NJ, Butcher LL (1982) Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res Bull 8: 727–749

    Article  PubMed  CAS  Google Scholar 

  • Birdsall NJM, Hulme EC (1983) Muscarinic receptor subclasses. Trends Pharmacol Sci 459–463

    Google Scholar 

  • Birdsall NJM, Hulme EC, Burgen ASV (1980) The character of the muscarinic receptors in different regions of the rat brain. Proc R Soc Lond [Biol] 207: 1–12

    Article  CAS  Google Scholar 

  • Blozovski D (1979) PA-Learning in young rats with dorsal hippocampal-and hippocampo-entorhinal atropine. Pharmacol Biochem Behav 10: 369–372

    Article  PubMed  CAS  Google Scholar 

  • Carlton PL (1983) Cholinergic mechanisms in the control of behavior by the brain. Psychol Rev 70: 19–39

    Article  Google Scholar 

  • Cormier SM (1981) A match-mismatch theory of limbic system function. Physiol Psychol 9: 336

    Google Scholar 

  • Crow TJ, Grove-White IG (1973) An analysis of the learning deficit following hyoscine administration to man. Br J Pharmacol 49: 322–327

    PubMed  CAS  Google Scholar 

  • Douglas RJ (1967) The hippocampus and behavior. Psychol Bull 67:416–442

    Article  PubMed  CAS  Google Scholar 

  • Drachman DA (1978) Central cholinergic system and memory. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 651–662

    Google Scholar 

  • Fisher A, Mantione CR, Abraham DJ, Hanin I (1982) Long-term central cholinergic hypofunction induced in mice by ethylcholine aziridinium ion (AF64A) in vivo. J Pharmacol Exp Ther 222: 140–145

    PubMed  CAS  Google Scholar 

  • Flicker C, Dean RL, Watkins DL, Fisher SK, Bartus RT (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav 18: 973–981

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Lerer B, Kuster J (1983) Loss of cholinergic neurons in the rat neocortex produces deficits in passive avoidance learning. Pharmacol Biochem Behav 19: 309–312

    Article  PubMed  CAS  Google Scholar 

  • Gilbert R, Rattan S, Goyal RK (1984) Pharmacologic identification, activation and antagonism of two muscarine receptor subtypes in the lower esophageal sphincter. J Pharmacol Exp Ther 230: 284–291

    PubMed  CAS  Google Scholar 

  • Gispen WH, Isaacson RL (1981) ACTH-induced excessive grooming in the rat. Pharmacol Ther 12: 209

    Article  PubMed  CAS  Google Scholar 

  • Goyal RK, Rattan S (1978) Neurohumoral, hormonal and drug receptors for the lower esophageal sphincter. Gastroenterology 74: 598–619

    PubMed  CAS  Google Scholar 

  • Hammer R, Giachetti A (1982) Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization. Life Sci 31: 2991–2998

    Article  PubMed  CAS  Google Scholar 

  • Hammer R, Berrie CP, Birdsall NJM, Burgen ASV, Hulme EC (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Harden TK, Meeker RB, Martin MW (1983) Interaction of a radiolabelled agonist with cardiac muscarinic cholinergic receptors. J Pharmacol Exp Ther 227: 570–577

    PubMed  CAS  Google Scholar 

  • Hearst E (1959) Effects of scopolamine on discriminated responding in the rat. J Pharmacol Exp Ther 126: 349–358

    PubMed  CAS  Google Scholar 

  • Heise GA, Conner R, Martin RA (1976) Effects of scopolamine on variable intertrial interval spatial alternation and memory in the rat. Psychopharmacology (Berlin) 49: 131–137

    Article  CAS  Google Scholar 

  • Hrbek J, Komenda S, Siroka A, Macakova J (1971) On the interaction of scopolamine and physostigmine in man. Act Nery Super 13: 200–201

    CAS  Google Scholar 

  • Hulme EC, Berrie CP, Birdsall NJM, Jameson M, Stockton JM (1983) Regulation of muscarinic agonist binding by cations and guanine nucleotides. Eur J Pharmacol 94: 59–72

    Article  PubMed  CAS  Google Scholar 

  • Jarrard LE (1975) Role of interference in retention by rats with hippocampal lesions. J Comp Physiol Psychol 89: 400–408

    Article  PubMed  CAS  Google Scholar 

  • Jarrard LE (1976) Anatomical and behavioral analysis of hippocampal cell fields in rats. J Comp Physiol Psychol 90: 1035–1050

    Article  PubMed  CAS  Google Scholar 

  • Jarrard LE, Kant GJ, Meyerhoff JL, Levy A (1984) Behavioral and neurochemical effects of in- traventricular AF64A administration in rats. Pharmacol Biochem Behav 21: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Johnson CT, Olton DS, Gage FH III, Jenko PG (1977) Damage to hippocampus and hippocampal connections: Effects on DRL and spontaneous alternation. J Comp Physiol Psychol 91: 508–522

    Article  PubMed  CAS  Google Scholar 

  • Leaton RN, Rech RH (1972) Locomotor activity increases produced by intrahippocampal and intraseptal atropine in rats. Physiol Behav 8: 539–541

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Nagy JI, Atmadja S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5: 1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Leith NJ, Barrett RJ (1975) Effects of hippocampal microinjections of d-amphetamine and scopolamine on active avoidance behavior in rats. J Comp Physiol Psychol 88: 285–299

    Article  PubMed  CAS  Google Scholar 

  • Levy A, Kant GJ, Meyerhoff JL, Jarrard LE (1984) Non-cholinergic neurotoxic effects of AF64A in the substantia nigra. Brain Res 305: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Lo Conte G, Bartolini L, Casamenti F, Marconcini-Pepeu I, Pepeu G (1982) Lesions of cholinergic forebrain nuclei: changes in avoidance behavior and scopolamine actions. Pharmacol Biochem Behav 17: 933–937

    Article  PubMed  Google Scholar 

  • Luthin GR, Wolfe BB (1984) Comparison of (3H)pirenzepine and (3H)quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain. J Pharmacol Exp Ther 228: 648–655

    PubMed  CAS  Google Scholar 

  • Mantione CR, Fisher A, Hanin I (1981) The AF64A-treated mouse: Possible model for central cholinergic hypofunction. Science 213: 579–580

    Article  PubMed  CAS  Google Scholar 

  • Martin MW, Smith MM, Harden TK (1984) Modulation of muscarinic cholinergic receptor affinity for antagonists in the rat heart. J Pharmacol Exp Ther 230: 424–430

    PubMed  CAS  Google Scholar 

  • McKinney M, Coyle JT, Hedreen JC (1983) Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J Comp Neurol 217: 103–121

    Article  PubMed  CAS  Google Scholar 

  • Mewaldt SP, Ghoneim MM (1979) The effects and interactions of scopolamine, physostigmine and methamphetamine on human memory. Pharmacol. Biochem Behav 10: 205–210

    Article  PubMed  CAS  Google Scholar 

  • Milar KS (1981) Cholinergic drug effects on visual discriminations: a signal detection analysis. Psychopharmacology (Berlin) 74: 383–388

    Article  CAS  Google Scholar 

  • Milner TA, Loy R, Amaral DG (1983) An anatomical study of the development of the septohippocampal projection in the rat. Dev Brain Res 8: 343–371

    Article  Google Scholar 

  • Moore JW, Goodell NA, Solomon PR (1976) Central cholinergic blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit nictitating membrane response. Physiol Psychol 4: 395–399

    Google Scholar 

  • Myhrer T (1975) Locomotor, avoidance, and maze behavior in rats with selective disruption of hippocampal output. J Comp Physiol Psychol 89: 759–777

    Article  PubMed  CAS  Google Scholar 

  • Ostfeld AM, Aruguete A (1962) Central nervous system effects of hyoscine in man. J Pharmacol Exp Ther 137: 133–139

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, New York

    Google Scholar 

  • Potter LT, Flynn DD, Hanchett HE, Kalinoski DL, Luber-Narod J, Mash DC (1983) Independent M1 and M2 receptors: ligands, autoradiography and functions. Trends Pharmacol Sci [Special Issue] 22–31

    Google Scholar 

  • Ross JF, Grossman SP (1974) Intrahippocampal application of cholinergic agents and blockers: effects on rats in differential reinforcement of low rates and Sidman avoidance paradigms. J Comp Physiol Psychol 86: 590–600

    Article  PubMed  CAS  Google Scholar 

  • Ross JF, McDermott LJ, Grossman SP (1975) Disinhibitory effects of intrahippocampal or intrahypothalamic injections of anticholinergic compounds in the rat. Pharmacol Biochem Behalf 3: 631–639

    Article  CAS  Google Scholar 

  • Sandberg K, Hanin I, Fisher A, Coyle JT (1984a) Selective cholinergic neurotoxin: AF64A’s effects in rat striatum. Brain Res 293: 49–55

    Article  PubMed  CAS  Google Scholar 

  • Sandberg K, Sanberg PR, Coyle JT (1984b) Effects of intrastriatal injections of the cholinergic neurotoxin AF64A on spontaneous nocturnal locomotor behavior in the rat. Brain Res 299: 339–343

    Article  PubMed  CAS  Google Scholar 

  • Sinnamon HM, Freniere S, Kootz J (1978) Rat hippocampus and memory for places of changing significance. J Comp Physiol Psychol 92: 142–155

    Article  PubMed  CAS  Google Scholar 

  • Solomon PR, Gottfried KE (1981) The septohippocampal cholinergic system and classical conditioning of the rabbit’s nictitating membrane response. J Comp Physiol Psychol 95: 322–330

    Article  PubMed  CAS  Google Scholar 

  • Spencer DG Jr, Lal H (1983) Effects of anticholinergic drugs on learning and memory. Drug Dev Res 3: 489–502

    Article  CAS  Google Scholar 

  • Spencer DG Jr, Pontecorvo MJ, Heise GA (in press) Central cholinergic involvement in learning and memory: effects of scopolamine on continuous non-matching and discrimination performance in the rat. Behav Neurosci

    Google Scholar 

  • Ter Horst GJ, Groenewegen HJ, Karst H, Luiten PGM (1984) Phaseolus vulgaris leuco-agglutinin immunohistochemistry: A comparison between autoradiographic and lectin tracing of neuronal efferents. Brain Res 307: 379–383

    Article  PubMed  Google Scholar 

  • Traber J, Klein HR, Gispen WH (1982) Actions of antidepressant and neuroleptic drugs on ACTH- and novelty-induced behavior in the rat. Eur J Pharmacol 80: 407–414

    Article  PubMed  CAS  Google Scholar 

  • Waelbroek M, Robberecht P, Chatelain P, Christophe J (1982) Rat cardiac muscarinic receptors. I. Effects of guanine nucleotides on high-and low-affinity binding sites. Mol Pharmacol 21: 581–588

    Google Scholar 

  • Wahle P, Sanides-Buchholtz C, Eckenstein F, Albus K (1984) Concurrent visualization of choline acetyltransferase-like immunoreactivity and retrograde transport of neocortically injected markers in basal forebrain neurons of cat and rat. Neurosci Lett 44: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Walker DW, Messer LG, Freund G, Means LW (1972) Effect of hippocampal lesions and inter-trial interval on single alternation peformance in the rat. J Comp Physiol Psychol 80: 469–477

    Article  PubMed  CAS  Google Scholar 

  • Walsh TJ, Tilson HA, DeHaven DL, Mailman RB, Fisher A, Hanin I (1984) AF64A, a cholinergic neurotoxin, selectively depletes acetylcholine in hippocampus and cortex, and produces long-term passive avoidance and radial arm maze deficits in the rat. Brain Res 321: 91–102

    Article  PubMed  CAS  Google Scholar 

  • Wamsley JK, Zarbin MA, Birdsall NJM, Kuhar MJ (1980) Muscarinic cholinergic receptors: autoradiographic localization of high and low affinity agonist binding sites. Brain Res 200: 112

    Article  Google Scholar 

  • Wamsley JK, Gehlert DR, Roeske WR, Yamamura HI (1984) Muscarinic antagonist binding site heterogeneity as evidenced by autoradiography after direct labelling with (3H)-QNB and (3H)-pirenzepine. Life Sci 34: 1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Warburton DM, Heise GA (1972) Effects of scopolamine on spatial double alternation in rats. J Comp Physiol Psychol 81: 523–532

    Article  PubMed  CAS  Google Scholar 

  • Watson M, Roeske WR, Yamamura HI (1982) (3H)pirenzepine selectively identifies a high affinity population of muscarinic cholinergic receptors in the rat cerebral cortex. Life Sci 31:2019–2023

    Article  PubMed  CAS  Google Scholar 

  • Watson M, Yamamura HI, Roeske WR (1983) A unique regulatory profile and regional distribution of (3H)pirenzepine binding in the rat provides evidence for distinct M1 and M2 muscarinic receptor subtypes. Life Sci 32: 3001–3011

    Article  PubMed  CAS  Google Scholar 

  • Wesnes K, Warburton DM (1984) Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology (Berlin) 82: 147–150

    Article  CAS  Google Scholar 

  • Winocur G (1980) The hippocampus and cue utilization. Physiol Psychol 8: 280–288

    Google Scholar 

  • Woolf NJ, Eckenstein F, Butcher LL (1983) Cholinergic projections from the basal forebrain to the frontal cortex: a combined fluorescent tracer and immunohistochemical analysis in the rat. Neurosci Lett 40: 93–98

    Article  PubMed  CAS  Google Scholar 

  • Yamamura HI, Wamsley JK, Deshmukh P, Roeske WR (1983) Differential light microscopic autoradiographic localization of muscarinic cholinergic receptors in the brainstem and spinal cord of the rat using (3H)pirenzepine. Eur J Pharmacol 91: 147–149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spencer, D.G., Horvath, E., Luiten, P., Schuurman, T., Traber, J. (1985). Novel Approaches in the Study of Brain Acetylcholine Function: Neuropharmacology, Neuroanatomy, and Behavior. In: Traber, J., Gispen, W.H. (eds) Senile Dementia of the Alzheimer Type. Advances in Applied Neurological Sciences, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70644-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70644-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70646-2

  • Online ISBN: 978-3-642-70644-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics