Skip to main content

Metabolic Biochemistry of Insect Flight

  • Conference paper
Book cover Circulation, Respiration, and Metabolism

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

An overview of the biochemistry of insect flight muscle will be presented incorporating information on the intermediary metabolism of fuels, enzyme regulation, mitochondrial function and neuronal and hormonal control of metabolism

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beenakkers AMT, van der Horst D J, van Marrewijk WJA (1981a) Role of lipids in energy metabolism. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 53–100

    Google Scholar 

  • Beenakkers AMT, van der Horst DJ, van Marrewijk WJA (1981b) Metabolism during locust flight Comp Biochem Physiol 69B: 315–321

    Google Scholar 

  • Beenakkers AMT, van der Horst DJ, van Marrewijk WJA (1984a) Biochemical processes directed to flight muscle metabolism. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 10. Pergamon, Oxford

    Google Scholar 

  • Beenakkers AMT, van der Horst DJ, van Marrewijk WJA (1984b) Insect flight muscle metabolism. Insect Biochem 14: 243–260

    Article  CAS  Google Scholar 

  • Bursell E (1981) The role of proline in energy metabolism. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 135–154

    Google Scholar 

  • Candy DJ (1981) Hormonal regulation of substrate transport and metabolism. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 19–52

    Google Scholar 

  • Clark MG, Patten GS, Filsell OH, Rattigan S (1983) Co-ordinated regulation of muscle glycolysis and hepatic glucose output in exercise by catecholamines acting via a-receptors. FEBS Lett 158: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Crabtree B, Newsholme EA (1975) Comparative aspects of fuel utilization and metabolism by muscle. In: Usherwood PNR (ed) Insect muscle. Academic, New York, pp 405–500

    Google Scholar 

  • Downer RGH, Orr GL, Gole JWD, Orchard I (1984) The role of octopamine and cyclic AMP in regulating hormone release from corpora cardiaca of the American cockroach. J Insect Physiol 30: 457–462

    Article  CAS  Google Scholar 

  • Elliot J, Hill L, Bailey E (1984) Changes in tissue carbohydrate content during flight of the fed and starved cockroach, Periplaneta americana L. Comp Biochem Physiol 78A: 163–165

    Article  Google Scholar 

  • Ford WCL, Candy DJ (1972) The régulation of glycolysis in perfused locust flight muscle. Biochem J 130: 1101–1112

    PubMed  CAS  Google Scholar 

  • Goldsworthy GJ, Gade G (1983) The chemistry of hypertrehalosemie factors. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss, New York, pp 109–119

    Google Scholar 

  • Hansford RG, Johnson RN (1975) The nature and control of the tricarboxylate cycle in beetle flight muscle. Biochem J 148: 389–401

    PubMed  CAS  Google Scholar 

  • Hansford RG, Johnson RN (1976) Some aspects of the oxidation of pyruvate and palmitoylcarnitine by moth (Manduca sexta) flight muscle mitochondria. Comp Biochem Physiol 55B: 543–551

    Article  CAS  Google Scholar 

  • Hers H-G, van Schaftingen E (1982) Fructose-2, 6-bisphosphate 2 years after its discovery. Biochem J 206: 1–12

    CAS  Google Scholar 

  • Johnson RN, Hansford RG (1975) The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The steady-state concentrations of citrate, isocitrate, 2-oxoglutarate and malate in flight muscle and isolated mitochondria. Biochem J 146: 527–535

    PubMed  CAS  Google Scholar 

  • Litosch I, Fradin M, Kasaian M, Lee HS, Fain JN (1982) Regulation of adenylate cyclase and cyclic AMP phosphodiesterase by 5-hydroxytryptamine and calcium ions in blowfly salivary gland homogenates. Biochem J 204: 153–159

    PubMed  CAS  Google Scholar 

  • Male KB, Storey KB (1983) Tissue specific isozymes of glutamate dehydrogenase from the Japanese beetle, Popillia japonica: Catablic vs. anabolic GDH’s. J Comp Physiol 151: 199–205

    Google Scholar 

  • McClure JB, Steele JE (1981) The role of extracellular calcium in hormonal activation of glycogen phosphorylase in cockroach fat body. Insect Biochem 11: 605–613

    Article  CAS  Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the medical sciences. John Wiley, New York Olembo NK, Pearson DJ (1982) Changes in the contents of intermediates of proline and carbohydrate metabolism in flight muscle of the tsetse fly Glossina morsitans and the fleshfly Sarcophaga tibialis. Insect Biochem 12: 657–662

    Google Scholar 

  • Orchard I (1982) Octopamine in insects: neurotransmitter, neurohormone, and neuromodulator. Can J Zool 60: 659–669

    Article  CAS  Google Scholar 

  • Orchard I, Lange AB (1983a) Release of identified adipokinetic hormones during flight and following neural stimulation in Locusta migratoria. J Insect Physiol 29: 425–429

    Article  CAS  Google Scholar 

  • Orchard I, Lange AB (1983b) The hormonal control of haemolymph lipid during flight in Locusta migratoria. J Insect Physiol 29: 639–642

    Article  CAS  Google Scholar 

  • Pines M, Tietz A, Weintraub H, Applebaum SW, Josefsson L (1981) Hormonal activation of protein kinase and lipid mobilization in the locust fat body in vitro. Gen Comp Endocrinol 43: 427–431

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen H (1981) Calcium and cAMP as synarchic messengers. John Wiley, New York

    Google Scholar 

  • Rowan AN, Newsholme EA (1979) Changes in the contents of adenine nucleotides and intermediates of glycolysis and the citric acid cycle in flight muscle of the locust upon flight and their relationship to the control of the cycle. Biochem J 178: 209–216

    PubMed  CAS  Google Scholar 

  • Sacktor B (1970) Regulation of intermediary metabolism with special reference to the control mechanisms in insect flight muscle. Adv Insect Physiol 7: 267–347

    Article  CAS  Google Scholar 

  • Sacktor B (1975) Biochemistry of insect flight. I. Utilization of fuels by muscle. In: Candy DJ

    Google Scholar 

  • Kilby BA (eds) Insect biochemistry and function. Chapman and Hall, London, pp 3–88

    Google Scholar 

  • Steele JE (1981) The role of carbohydrate metabolism in physiological function. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 101–133

    Google Scholar 

  • Steele JE (1983) Endocrine control of carbohydrate metabolism in insects. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss, New York, pp 427–439

    Google Scholar 

  • Storey KB (1980a) Regulatory properties of hexokinase from flight muscle of Schistocerca americana gregaria. Role of the enzyme in control of glycolysis during the rest-to-flight transition. Insect Biochem 10: 637–645

    Article  CAS  Google Scholar 

  • Storey KB (1980b) Kinetic properties of purified aldolase from flight muscle of Schistocerca americana gregaria. Role of the enzyme in the transition from carbohydrate to lipid-fueled flight. Insect Biochem 10: 647–655

    Article  CAS  Google Scholar 

  • Storey KB (1983) Regulation of cockroach flight muscle phosphofructokinase by fructose 2,6-bisphosphate. FEBS Lett 161: 265–268

    Article  CAS  Google Scholar 

  • Storey KB (1984) Phosphofructokinase from flight muscle of the cockroach, Periplaneta americana:Control of enzyme activation during flight. Insect Biochem 15: 663–666

    Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258: 10867–10872

    PubMed  CAS  Google Scholar 

  • Tsien RY, Pozzan T, Rink TJ (1984) Measuring and manipulating cytosolic Ca2+ with trapped indicators. Trends Biochem Sci 9: 263–266

    Article  CAS  Google Scholar 

  • Ward JP, Candy DJ, Smith SN (1982) Lipid storage and changes during flight by triatomine bugs (Rhodnius prolixus and Triatoma infestans). J Insect Physiol 28: 527–534

    Article  CAS  Google Scholar 

  • Worm RAA, Luytjes W, Beenakkers AMT (1980) Regulatory properties of changes in the contents of coenzyme A, carnitine and their acyl derivatives in flight muscle metabolism of Locusta migratoria. Insect Biochem 10: 403–408

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Storey, K.B. (1985). Metabolic Biochemistry of Insect Flight. In: Gilles, R. (eds) Circulation, Respiration, and Metabolism. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70610-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70610-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70612-7

  • Online ISBN: 978-3-642-70610-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics