Skip to main content

An Electrogenic Proton Pump on the Tonoplast of Acer Pseudoplatanus L. Free Cells and Isolated Vacuoles

  • Conference paper
Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants

Abstract

Data on transtonoplastic potential are rather rare for vacuoles in situ, and can be contradictory for protoplasts and isolated vacuoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alibert G, Carrasco A, Boudet AM(1982) Changes in biochemical composition of vacuoles isolated from Acer pseudoplatanus L. during cell culture. BBA 721 : 22–29,

    CAS  Google Scholar 

  • Barbier H, Guern J (1982) Transmembrane potential of isolated vacuoles and sucrose accumulation by Beta vulgaris roots. Plasmalemma and tonoplast. D. Marmé, E. Marré, R. Hertel, eds, Elsevier Biomedial Press, p 233

    Google Scholar 

  • Bates GW, Goldsmith MH, Goldsmith TH (1982) Separation of tonoplast and plasma membrane potential and resistance in cell of oat coleoptiles. J Membrane Biol 66: 15–23

    Article  CAS  Google Scholar 

  • Bennett AB, Spanswick RM (1983) Optical measurements of ApH and in corn root membrane vesicles. Kinetic analysis of Cl- effects on a proton-translocating ATPase. J Membr. Biol 71 : 95–107

    Article  CAS  Google Scholar 

  • Bielawski J, Thompson TE, Lehninger AL (1966) The effect of 2.4-Dinitrophenol on the electrical resistance of the phospholipid bilayer membranes. Biochem Biophys Res commun 24 948–954

    Article  PubMed  CAS  Google Scholar 

  • Boller T (1982) Enzymatic equipment of plant vacuoles. Physiol Veg 20 : 247–257

    CAS  Google Scholar 

  • Boudet A , Canut H, Alibert G (1981) Isolation and characterization of vacuoles from Melilotus alba mesophyll. Plant Physiol 68 : 1354–1358

    Article  PubMed  CAS  Google Scholar 

  • Brennecke R, Lindemann B (1971) A choped-current clamp for current injection and recording of membrane polarization with Single electrodes of changing resistance. J of Life Sci 1 : 53–58

    Google Scholar 

  • Briskin DP, Leonard RT (1979) Ion transport in isolated protoplasts from tobacco suspension cells. III. Membrane potential. Plant Physiol 64 : 959–962

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman JM, Hanson JB (1979)Energy-linked potassium influx as related to cell potential in corn roots. Plant Physiol 64 : 842–845

    Article  Google Scholar 

  • Cleland RE, Lomax T (1977) Hormonal control of H+ exeretion from oat cells. In: Regulations of cell membrane activities in plants. Marré & Cifferi, Elsevier, Biomedical Press, p 161

    Google Scholar 

  • Cocucci M, Marre E, Ballarin-Denti A, Scacchi A (1976) Characteristics of fusicoccin-induced changes of transmembrane potential and ion uptake in maize root segments. Plant Sei Letters 6: 143–156.

    Google Scholar 

  • Cornel D, Grignon C, Rona JP, Heller R (1983) Measurement of intracellular potassium activity in protoplasts of Acer pseudoplatanus : origin of their electroppsitivity. Physiol Plant 57 : 203–209

    Google Scholar 

  • D’Auzac J (1975) Caracterisation d’une ATPase membranaire en presence d’une phosphatase acide dans les lutoides d’Hevea brasiliensis. Phytochem 14 : 671–675

    Google Scholar 

  • D’Auzac J (1977) ATPase membranaire des vacuoles lysosomales : les lutoides du latex d’Hevea brasiliensis. Phytochem 16 : 1881–1885

    Google Scholar 

  • D’Auzac J, Crétin H, Marin B, Lioret C (1982) A plant vacuolar system : the lutoids from Hevea brasiliensis latex. Physiol Veg 20 : 311–331

    Google Scholar 

  • Dodd WA, Pitman MC, West KR (1966) Sodium and potassium transport in the marine alga Chaetomorpha Darwinii. Austr J Biol Sei 19 : 341–354

    Google Scholar 

  • Doli S, Hauer R (1981) Determination of the membrane potential of vacuoles isolated from red-beet storage tissue. Planta 152 : 153–158

    Google Scholar 

  • Drake G (1979) Electrical coupling, potential and resistance in oat coleoptiles : effect of azide and Cyanide. J exper Bot 30 : 719–725

    Google Scholar 

  • Dunlop J (1976) The electrical potential difference across the tonoplast of root cells. J exper Bot 27 : 908–915

    Google Scholar 

  • Dupont FM, Giorgi DL, Spanswick RM (1982) Characterization of a proton-translocating ATPase in microsomal vesicles from corn roots. Plant Physiol 70 : 1694–1699

    Google Scholar 

  • Etherton B, Higinbotham N (1960) Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science 131 : 409–410.

    Google Scholar 

  • Ginsburg H, Ginzburg BZ (1974) Radial water and solute flows in roots of Zea mavs. IV. J exper Bot 25 : 28–35

    Google Scholar 

  • Goldsmith TH, Goldsmith MH (1978) The . Interpretation of intracellular measurements of membrane potential. Resistance and coupling in cells of higher plants. Planta 143 : 267–274

    Google Scholar 

  • Greenham CG (1966) The relative electrical resistance of the plasmalemma and tonoplast in higher plants. Planta 69 : 150–157

    Google Scholar 

  • Grignon C (1974) Etude des flux et de la distribution endocellulaire du potassium chez les cellules libres d’Acer pseudoplatanus L. Thèse d’Etat, Universite Paris 7, p 300

    Google Scholar 

  • Halbou TK, Kovoor A (1982) Regeneration of callus from coconnut protoplasts. In Symposium on “Tissue culture of economic cally irnportant plants” UNESCO, Singapore, p 149

    Google Scholar 

  • Gutknecht J (1966) Sodium, potassium and Chloride transport and membrane Potentials in Valonia ventricosa. Biol Bull 130 : 331–336

    Google Scholar 

  • Heller R (1953;) Recherche sur la nutrition minerale des tissus vegetaux cultives in vitro. Ann des Sei N:at Bot 11° série : 1–222

    Google Scholar 

  • Higinbotham N (1974) Conceptual developments in membrane transport, 1924–1974. Plant Physiol 54: 454–462

    Google Scholar 

  • Higinbotham N, Anderson WP (1974) Electrogenic pumps in higher plants cells. Canad J Bot 52 : 1011–1021

    Google Scholar 

  • Higinbotham N, Graves JS, Davis RF (1970) Evidence for an electrogenic ion transport pump in cells of higher plants. J memb Biol 3 : 210–222

    Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of Na ions on the electrical activity of the giant axon of the squid. J Physiol 108 : 37–77

    Google Scholar 

  • Jeschke WD, Stelter W (1976) Measurements of longitudinal ion profiles in Single roots of Hordeum and Atriplex by use of flameless atomic spectroscopy. Planta 128 : 107–112

    Google Scholar 

  • Jochem P, Rona JP, Smith JAC, Lüttge U (1984) Anion-sensitive ATPase activity and proton transport in isolated vacuoles of species of the CAM genus Kalanchoe. Physiol Plant (to be published)

    Google Scholar 

  • Kedem O, Essig A (1965) Isotope flows and flux ratios in biological membranes. J gen Physiol 48 : 1047–1070

    Google Scholar 

  • Kinnersley AM, Racusen RH, Galston AW (1978) A comparison of regenerated cell walls in tobacco and cereal protoplasts. Planta 139 : 155–158

    Google Scholar 

  • Kurkdjian A (1979) Action de la fusicoccine sur la morphologie et le grandissement de cellules d’Acer pseudoplatanus cultivees in vitro. Physiol Veg 17 : 305–315

    Google Scholar 

  • Kurkdjian A, Barbier-Brygoo H (1983) A hydrogen ion-selective liquid-membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture. Analytical Biochemistry 132 : 96–104

    Google Scholar 

  • Kurkdjian A, Guern J (1978) Intracellular pH in higher plant cells. I. Improvements In the use of the 5.5-Dimethyloxazolidine-2 (Cl-), 4, Dione distribution technique. Plant Sei Lett 11 : 337–344

    Google Scholar 

  • Kurkdjian A, Guern J (1981) Vacuolar pH measurement in higher plant cells. I. Evaluation of the methylamine method. Plant Physiol 67 : 953–957

    Google Scholar 

  • Lefebvre J, Gillet C (1968) Effets du rubidium sur le potentiel de membrane et la resistance electrique de Nitella flexilis. Bull Soc r Bot Beige 102 : 61–66

    Google Scholar 

  • Leigh RA (1983) Methods, progress and potential for use of isolated vacuoles in studies of solute transport in higher plant cells. Physiol Plant 57 : 390–396

    Google Scholar 

  • Leigh RA, Branton D (1976) Isolation of vacuoles frem root storage tissue of Beta vulgaris. Plant Physiol 58 : 656–662

    Google Scholar 

  • Lindemann B (1979) Microelectrode artifacts and frog skin potentials. J Membrane Biol 51 : 99–100

    Google Scholar 

  • Lüttge U, Ball E (1979) Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plant Kalanchoe daigremontiana. J Membrane Biol 47 : 401–422

    Google Scholar 

  • Lüttge U, Zirke G (1974) Attempts to measure plasmalemma and tonoplast electropotentials in srnall cells of the moss Mnium using centrifugation techniques. J Membrane Biol 18 : 305–314

    Google Scholar 

  • Lüttge U, Smith JAC, Marigo G, Osmond CB (1981) Energetic of malate accumulation in the vacuoles of Kalanchoe tubiflora cells. EEBS Lett 126 : 81–84

    Google Scholar 

  • Maillot C (1984) Régulation de la-pression de turgescence chez les cellules d’Acer pseudoplatanus. Thèse de spécialité, Université Paris 7 (in press)

    Google Scholar 

  • Marigo G, Lüttge U, Smith JAC (1983) Cytoplasmic pH and the control of Crassulacean acid metabolism.Z Pflanzenphyslol Bd 109 : 405–413

    Google Scholar 

  • Marin B, Marin-Lanza M, Komor E (1981) The protonmotive potential difference across the vacuolysosomal membrane of Hevea brasiliensis (mbber tree) and its modification by a membrane-bound adenosine triphosphatase. Biochem J 198 : 365–372

    Google Scholar 

  • Marin B, Cretin H, D’Auzac J (1982) Energization of solute transport and accumulation at the tonoplast in Hevea latex. Physiol Veg 20 : 333–346

    Google Scholar 

  • Marre E (1979) Fusicoccin . A tool in plant physiology. Annu Rev Plant Physiol 30 : 273–288

    Google Scholar 

  • Matile P (1978) Biochemistry and function of vacuoles. Ann Rev Plant Physiol 29 :193–213

    Google Scholar 

  • Mertz SM, Higinbotham N (1976) Transmembrane electropotential in barley roots as related to cell type, cell location and cutting and aging effects 1–2. Plant Physiol 57 : 123–138

    Google Scholar 

  • Moody W, Zeiger E (1978) Electrophysiological properties of onion guard cells. Planta 139 : 159–165

    Google Scholar 

  • Monestiez M, Rona JP (1983) ATP-öependant Ca++ transport and Ca++-Mg++ATPase activities: is there a link with the proton pump and with ecological status? In Membrane and Compartmentation in the regulation of plant functions Toulouse 13–16 sept 1983

    Google Scholar 

  • Nagel W (1979) Microelectrode artifact and frog skin potentials. J Membrane Biol 51 : 97–99

    Google Scholar 

  • O’Neill SD, Bennett AB, Spanswick RM (1983) Characterization of a NO3 --sensitive H+-ATPase from com roots. Plant Physiol 72 : 837–846

    Google Scholar 

  • Page KR, Kelday LS, Bowling DJF (1981) The diffusion of KCl from microelec trodes. J Exper Bot 32 : 55–58

    Google Scholar 

  • Pennarun AM (1980) Mécanismes de la distribution endocellulaire des ions Na dans les cellules libres d’Acer pseudoplatanus L. Thèse Doctorat d’Etat, Univ. Paris 7, p 334

    Google Scholar 

  • Pennarun AM, Van De Sype G, Grignon C, Heller R (1978) Electrochemical State of potassium and sodium in free cells of Acer pseudoplatanus L. Physiol Plant 42 :331–336

    Google Scholar 

  • Pierce WS, Higinbotham N (1970) Compartments and fluxes of K+, Na+ and Cl- in Avena coleoptlle. Plant Physiol 46 : 666–673

    Google Scholar 

  • Pitman MG (1969) Simulation of Cl- uptake by low-salt barley roots as a test of models of salt uptake. Plant Physiol 44 : 1417–1427

    Google Scholar 

  • Racusen RH, Kinnersley AM, Galston AW (1977) Osmotically induced changes in electrical properties of plant protoplasts membranes. Science 198 : 405–407

    Google Scholar 

  • Rollo F, Nielsen E, Cella. R (1977) Cell division and ion transport as tests for the discrimination between the actions of 2.4 D and fusicoccin. In : Regulation of cell membrane activities in plants. Marre E, Cifferi O, Eds, Elsevier Biomedical Press, p 261

    Google Scholar 

  • Rona JP (1973) Premieres mesures du potentiel electrique sur des protoplastes et des vacuoles isolees d’Acer pseudoplatanus L.C R Acad Sei 277 : 185–188

    Google Scholar 

  • Rona. JP, Cornel D (1979) Resistances electriques chez les cellules libres, les protoplastes et les vacuoles isolees d’Acer pseudoplatanus L. Physiol Veg 17 :1–11

    Google Scholar 

  • Rona JP, Grignon D (1972) Obtention de protoplastes a partir de suspensions de cellules d’Acer pseudoplatanus L. C R Acad Sei 274 : 2976–2979

    Google Scholar 

  • Rona JP,Cornel D, Heller R (1977) Direct measurement of the potential difference between the cytoplasm of free cells of Acer pseudoplatanus L. and external medium. Bioelectrochem and Bioenerg 4 : 185–194

    Google Scholar 

  • Rona JP, Cornel D, Grignon C, Heller R (1982) The electrical potential difference across the tonoplast of Acer pseudoplatanus cells. Physiol Veg 20 : 459–463

    Google Scholar 

  • Rona JP, Cornel D, Chedhomme F, Heller R (1983) The contribution of the plasmalemma and the tonoplast to the electrical properties of Acer pseudoplatanus L cells. In Memb Transp in Plants, Int Symposium Prague

    Google Scholar 

  • Rona JP, Pitman MG, Lüttge U, Ball E (1980) Electrochemical data on compartmentation into cell wall , cytoplasm and vacuole of leaf cells in the CAM genus Kalanchoe. J Membrane Biol 57 : 25–35

    Google Scholar 

  • Rona JP, Van De Sype G, Cornel D, Grignon C, Heller R (1980) Plasmolysis effect on electrical characteristics of free cells and protoplasts of Acer pseudoplatanus L. J Electroanai Chem 116 : 377–391

    Google Scholar 

  • Rubinstein B (1978) Use of lipophilic cations to measure the membrane potential of oat leaf protoplasts. Plant Physiol 62 : 927–929

    Google Scholar 

  • Saftner RA, Raschke K (1981) Electrical potentials in stomatal complexes. Plant Physiol 67 : 1124–1132

    Google Scholar 

  • Smith JAC, Uribe EG, Ball E, Lüttge U (1984) ATPase activity associated with isolated vacuoles of the CAM plant Kalanchoe daigremontiana. Planta (submitted)

    Google Scholar 

  • Spanswick RM (1970) Electrophysiological techniques and the magnitudes of the membrane potentials and resistances of Nitella translucens. J exper Bot 21 :617–627

    Google Scholar 

  • Spanswick RM (1981) Electrogenic ion pumps. Ann Rev Plant Physiol 32 : 267–289

    Google Scholar 

  • Thibaud JB, Grignon C (1981) Mechanism of nitrate uptake in corn roots. Plant Sei Lett 22 : 279–289

    Google Scholar 

  • Thom M, Komor E (1984) Role of the ATPase of sugar-cane vacuoles in energization of the tonoplast. Eur J Biochem 138 : 93–99

    Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes. Academic Press London, New-York, San Francisco, p 68

    Google Scholar 

  • Ullrich WR, Novacky A (1981) Nitrate-dependent membrane potential changes and their induetion in Lemna gibba G 1. Plant Sci Lett 22: 211–217

    Article  CAS  Google Scholar 

  • Vorobiev LN (1967) Potassium ion activity in the cytoplasm and the vacuole of cells of Chara and Griffithsia. Nature 216 : 1325–1327

    Article  PubMed  CAS  Google Scholar 

  • Walker JL (1971) Specific liquid ion exchanger microelectrodes. Anal Chem 43 : 89A–93A

    Article  CAS  Google Scholar 

  • Walker RR, Leigh RA (1981) Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 153 : 140–149

    Article  CAS  Google Scholar 

  • Wagner RR, Lin W (1982) An active proton pump of intact vacuoles isolated from Tulipa petals. BBA 689 : 261–266

    Article  CAS  Google Scholar 

  • Wyn Jones RG, Storey R, Leigh RA, Ahmad N, Pollard A (1977) A hypothesis on cytoplasmic osmoregulation. In Regulation of Cell Membrane Activities in Plants, E. Marre and O. Cifferi, ed., Elsevier/North-Holland Biochemical Press, Amsterdam, p 121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rona, J.P., Cornel, D. (1985). An Electrogenic Proton Pump on the Tonoplast of Acer Pseudoplatanus L. Free Cells and Isolated Vacuoles. In: Marin, B.P. (eds) Biochemistry and Function of Vacuolar Adenosine-Triphosphatase in Fungi and Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70320-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70320-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70322-5

  • Online ISBN: 978-3-642-70320-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics