Skip to main content

Part of the book series: Gesammelte Werke / Collected Works ((1853,volume A / 2))

  • 189 Accesses

Zusammenfassung

Die Quantentheorie der Wellenfelder in ihrer üblichen Form ist unbefriedigend, weil siemeist zu Divergenzen führt, die die strenge mathematische Behandlung der betreffenden Probleme verhindern. Eine Theorie dieser Art kann also nur als eine ausgearbeitete korrespondenzmäßige Behandlung der gestellten Fragen angesehen werden. Trotz der Erfolge bei der Quantenelektrodynamik1 oder der Theorie des Mesons2 ist der bisherige Formalismus also sicher noch nicht sind in der Zwischenzeit Arbeiten anderer Autoren über den gleichen Gegenstand veröffentlicht worden, und es erscheint deshalb berechtigt, im folgenden eine zusammenfassende Darstellung dieses Problemkreises zu geben.

Die übliche Quantentheorie der Wellenfelder, bei der man von einer H ami1ton —Funktion in Abhängigkeit von irgendwelchen Feldgrößen ausgeht, führt im allgemeinen zu Divergenzen. Der vorliegende Aufsatz stellt einen zusammenfassenden Bericht über verschiedene Arbeiten dar, die durch Erweiterung des bisherigen Verfahrens den mathematischen Rahmen einer zukünftigen Theorie der Wellenfelder oder der Elementarteilchen festzulegen suchen. Dabei wird einerseits auf die Bedeutung einer unitären Matrix, der sogenannten Streumatrix, und einer mit ihr verknüpften hermiteschen Matrix hingewiesen; andererseits wird gezeigt, daß auch bei einer Erweiterung der bisherigen Wellengleichungen zu sehr allgemeinen Integro-Differentialgleichungen die Forderungen der Quantentheorie zu einem eindeutigen mathematischen Formalismus führen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. In his contribution to the issue of the Annalen der Physik published in honor of the 70th birthday of Max Planck (paper No. 6, Group 8, pp. 301— 314 below), Heisenberg also mentions the Planck length 1p = = 4 x 10-33 cm, but considers it too small to be identified with to.

    Google Scholar 

  2. Some time later, there were indications, for a while, that the multiple production in nuclear collisions could be explained as a cascade process, but further experiments showed that there are definitely collisions where many particles are created in a single act.

    Google Scholar 

  3. As Heisenberg points out in paper No. 1, special cases of the S-matrix were previously used in nonrelativistic quantum mechanics, in particular in connection with the partial wave decompotion of amplitudes for scattering in a central potential. The S-matrix had first been used by J.A. Wheeler in more complicated many-channel situations in nuclear physics. [See Phys. Rev. 52, 1107 (1937)]. In a letter from Rome dated March 1943, Gian-Carlo Wick asks some questions about Heisenberg’s first two S-matrix papers, and he also informs him about the work of Gregory Breit on the S-matrix in Schrödinger theory [Phys. Rev. 58, 1068 (1940)], which was aimed mainly toward a description of resonances in terms of complex poles in the energy variable. Heisenberg was apparently unaware of these papers.

    Google Scholar 

  4. The general connection between S-matrix elements and various cross-section had also been studied extensively by C. Moller in Copenhagen, who corresponded with Heisenberg during and after the war [see K. Danske Vidensk. Selskab Mat.-Fys. Medd. 23, No. 1 (1945); 22, No. 19 (1946)].

    Google Scholar 

  5. Kramers and Wouthuysen had discovered these properties for nonrelativistic scattering ampli- tudes in about 1940, as remarked in a letter by Kramers to Heisenberg written in April 1944.

    Google Scholar 

  6. The actual quotation from Pauli’s letter is: “Ich persönlich halte die Idee der analytischen Fortsetzung der S-Matrix far einen vollständigen Fehlschlag.”

    Google Scholar 

  7. In the nonrelativistic limit of field theoretical scattering amplitudes, one generally finds that these crossed-channel singularities are related to branch cuts appearing in corresponding amplitudes obtained from Schrödinger theory with superpositions of Yukawa potentials: V(r) _,(da g(a) (e- a r/r). In an S-wave amplitude, the Yukawa potential gives rise to logarithmic branch points on the negative energy axis. With the special choice g(a)aö’(a-a), one obtaines an exponential potential of range a-t, and the logarithmic branch points become simple poles. Within the framework of field theory, we do not expect g(a) to be a S’-function.

    Google Scholar 

  8. W. Heisenberg: The present situation in the theory of elementary particles, in Two Lectures (Cambridge, University Press 1949), pp. 5–25; reprinted in Collected Works B,pp. 444–449

    Google Scholar 

  9. The actual remark is: “Deine Arbeiten über die S-Matrix habe ich mit großem Interesse gelesen, aber sie bleiben so lange nur ein Programm, als keine Methode angegeben wird, um die S-Matrix theoretisch zu bestimmen.”

    Google Scholar 

  10. For references, see for example the collection of papers on Quantum Electrodynamics (J. Schwinger, ed., Dover Publications, New York 1958).

    Google Scholar 

  11. F. Dyson: Phys. Rev. 75, 476, 1736 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  12. See for example W. Heisenberg: Der gegenwärtige Stand der Theorie der Elementarteilchen, Die Naturwissenschaften 42, 637–641 (1955); reprinted in Collected Works B,pp. 547–551.

    Google Scholar 

  13. W. Heisenberg: Bericht über die allgemeinen Eigenschaften der Elementarteilchen (1939), in Collected Works B,pp. 346–358

    Google Scholar 

  14. S. Sakata, H. Umezawa, S. Kamefuchi: Progr. Theor. Phys. 7, 377 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  15. For a review and references, see for example R. Oehme: Forward Dispersion Relations and Microcausality, in Quanta, ed. by P.G.O. Freund, C.J. Goebel, Y. Nambu, (University of Chicago Press, Chicago and London 1970), p. 309; R. Oehme, Nuovo Cim. 4, 1316 (1956), (see appendix, in particular);N.N. Bogoliubov, D.V. Shirkov: Introduction to the Theory of Quantized Fields (Interscience, New York 1959) Chap. IX;H. Bremermann, R. Oehme, J.G. Taylor: Phys. Rev. 109, 2178 (1958); H. Lehmann: Suppl. Nuovo Cim. 14, 153 (1958).

    Google Scholar 

  16. For reviews and references, see for example M.L. Goldberger: In Relations de Dispersion et Particules Elémentaires, ed. by C. de Witt and R. Omnes (Hermann, Paris 1960), pp. 15–151; G.F. Chew: S-Matrix Theory of Strong Interactons (Benjamin, New York 1961);S. Mandelstam; Reports of Progress in Physics 25, 99 (1962).

    Google Scholar 

  17. M.L. Goldberger, H. Miyazawa, R. Oehme: Phys. Rev. 99, 986 (1955);M.L. Goldberger, Y. Nambu, R. Oehme: Ann. Phys. (New York) 2, 266 (1956)

    Google Scholar 

  18. For a review and references, see for example R. Oehme in: Strong Interactions and High Energy Physics, ed. by R.G. Moorhouse ( Oliver and Boyd, Edinburgh and London 1964 ), pp. 164–256.

    Google Scholar 

  19. G. Veneziano: Nuovo Cim. 57A, 180 (1968);R. Oehme: Nucl. Phys. B16, 161 (1970)

    Google Scholar 

  20. For a review and references, see for example, Dual Theory,ed. by M. Jacob (North-Holland, Amsterdam 1974);J. Scherk; Rev. Mod. Phys. 47, 123 (1975).

    Google Scholar 

  21. Y. Nambu; in Proc. of the Intern. Conf. on Symmetries and Quark Models, ed. by R. Chand ( Gordon and Breach, New York 1970 ) p. 269

    Google Scholar 

  22. P. Ramond: Phys. Rev. D3, 2415 (1971);A. Neveu, J.H. Schwarz: Nucl. Phys. B31, 86 (1971)

    Google Scholar 

  23. For a review and references, see M.B. Green, J.H. Schwarz, E. Witten: Superstring Theory, 2 volumes (Cambridge University Press, Cambridge 1987 ); Unified String Theories, ed. by M. Green, D. Gross (World Scientific, Singapore 1986 ).

    Google Scholar 

  24. J. Scherk, J.H. Schwarz: Nucl. Phys. B81, 118 (1974);T. Yoneya: Nuovo Cimento Letters 8, 951 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heisenberg, W. (1989). Der mathematische Rahmen der Quantentheorie der Wellenfelder. In: Blum, W., Dürr, HP., Rechenberg, H. (eds) Original Scientific Papers / Wissenschaftliche Originalarbeiten. Gesammelte Werke / Collected Works, vol A / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70078-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70078-1_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-52241-3

  • Online ISBN: 978-3-642-70078-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics